Cho, x,y,z >0
CM : \(16\left(abc+bcd+cda+dab\right)\le\left(a+b+c+d\right)^4\)
Cho a,b,c,d>0
\(16\left(abc+bcd+cda+dab\right)\le\left(a+b+c+d\right)^3\)
CMBDT
\(ab+bc+cd+da\le\frac{\left(a+b+c+d\right)^2}{4}\)
\(abc+bcd+cda+dab\le\frac{\left(a+b+c+d\right)^3}{16}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
CHỨNG MINH \(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3\)
cho abc + bcd + cda + dab = a+b+c+d+\(\sqrt{2015}\)
CMR : \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\ge2015\)
cho a,b,c >0 và abc+bcd+cda+dab=4. Tìm min của
P=\(\dfrac{\left(a+b\right)^2}{c+d}\)+\(\dfrac{\left(a+c\right)^2}{b+d}\)+3(d-a)
cho a,b,c,d là các số dương . CMR :
\(\frac{abc}{\left(a+d\right)\left(b+d\right)\left(c+d\right)}+\frac{bcd}{\left(b+a\right)\left(c+a\right)\left(d+a\right)}+\frac{cda}{\left(a+b\right)\left(c+b\right)\left(d+b\right)}+\frac{dab}{\left(d+c\right)\left(a+c\right)\left(b+c\right)}\ge\frac{1}{2}\)
Cho a,b,c,d là các số thực thoả mãn điều kiện
\(abc+bcd+cda+dab=a+b+c+d+\sqrt{2012}\)
CMR: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\ge2012\)
\(\sqrt{2012}=\left(abc+bcd-a-d\right)+\left(cda+dab-c-b\right)\)
\(=\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\)
\(\Rightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\right]^2\)
\(\le\left[\left(bc-1\right)^2+\left(c+b\right)^2\right]\left[\left(a+d\right)^2+\left(ad-1\right)^2\right]\)
\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)
Cho a, b, c, d là các số thực thỏa mãn điều kiện: \(abc+bcd+cda+dab=a+b+c+d+\sqrt{2016}\) Chứng minh rằng: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\ge2016\)
https://diendantoanhoc.net/topic/76281-bdt-thi-h%E1%BB%8Dc-sinh-gi%E1%BB%8Fi-t%E1%BB%89nh-l%E1%BB%9Bp-9-nam-2011-2012/
Cho a, b, c, d là các số thực thỏa mãn điều kiện \(abc+bcd+cda+dab=a+b+c+d+\sqrt{2016}\)
Chứng minh rằng: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\ge2016\)