log9a=log12b=log16(a+b) mệnh đề đúng là :
a) \(\dfrac{a}{b}\in\left(\dfrac{2}{3};1\right)\) b)\(\dfrac{a}{b}\in\left(0;\dfrac{2}{3}\right)\) c)\(\dfrac{a}{b}\in\left(9;12\right)\) d)\(\dfrac{a}{b}\in\left(9;16\right)\)
Câu 6. Tìm các giá trị thực của tham số \(m\) để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3.
A. \(m=1,m=5\)
B. \(m=5\)
C. \(m=1\)
D. \(m=-1\)
Tìm các số a, b, c, d sao cho hàm số \(f\left(x\right)=ax^3+bx^2+cx+d\) đạt cực tiểu tại \(x=0;f\left(0\right)=0\) và đạt cực tiểu tại \(x=1;f\left(1\right)=1\)
Tìm cực trị của các hàm số sau :
a) \(y=\dfrac{x+1}{x^2+8}\)
b) \(y=\dfrac{x^2-2x+3}{x-1}\)
c) \(y=\dfrac{x^2+x-5}{x+1}\)
d) \(y=\dfrac{\left(x-4\right)^2}{x^2-2x+5}\)
Cho f(x) = \(\dfrac{1}{4}x^4-2x^3+\dfrac{3}{2}\left(m+2\right)x^2-\left(m+6\right)x+1\)
a, Tìm m để hàm số có 3 cực trị.
b, Viết phương trình parabol đi qua 3 điểm cực trị của ĐTHS
Cho hàm số : \(y=\frac{2x+3}{x+2}\) có đồ thị C
Cho đường thẳng d : y=-2x+m. Chứng minh rằng d cắt (C) tại 2 điểm A, B phân biệt với mọi số thực m. Gọi \(k_1,k_2\) lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm m để \(P=\left(k_1\right)^{2014}+\left(k_2\right)^{2014}\) đạt giá trị nhỏ nhất.
Tìm cực trị của các hàm số sau :
a) \(y=x-6\sqrt[3]{x^2}\)
b) \(y=\left(7-x\right)\sqrt[3]{x+5}\)
c) \(y=\dfrac{x}{\sqrt{10-x^2}}\)
d) \(y=\dfrac{x^3}{\sqrt{x^2-6}}\)
Tìm cực trị của các hàm số sau :
a) \(y=-2x^2+7x-5\)
b) \(y=x^3-3x^2-24x+7\)
c) \(y=x^4-5x^2+4\)
d) \(y=\left(x+1\right)^3\left(5-x\right)\)
e) \(y=\left(x+2\right)^2\left(x-3\right)^3\)
biết hàm số y=\(-x^3+3mx^2+3\left(1-m^2\right)x+m^3-m^2\)có 2 cực trị và điểm A (2;-2) thuộc đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số . Gía trị của tham số m thuộc tập hợp nào
A.(\(-\infty;-3\) B.\(\left(4;9\right)\) C.\(\left(-5:+\infty\right)\) D.(-7;-4)