tìm cực trị của các hàm số sau:
1. \(y=\sqrt{x-3}+\sqrt{6-x}\)
2. \(y=x-3+\dfrac{9}{x-2}\)
3. \(y=x\sqrt{3-x}\)
4. \(y=\dfrac{x}{x^2+4}\)
5. \(y=\dfrac{x^2+8x-24}{x^2-4}\)
Câu 6. Tìm các giá trị thực của tham số \(m\) để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3.
A. \(m=1,m=5\)
B. \(m=5\)
C. \(m=1\)
D. \(m=-1\)
Tìm cực trị của các hàm số sau :
a) \(y=x-6\sqrt[3]{x^2}\)
b) \(y=\left(7-x\right)\sqrt[3]{x+5}\)
c) \(y=\dfrac{x}{\sqrt{10-x^2}}\)
d) \(y=\dfrac{x^3}{\sqrt{x^2-6}}\)
Tìm m để hàm số y = \(\dfrac{m-1}{3}.x^3+\left(m^2-4\right).x^2+\left(m^2-9\right)x+2\) không có cực trị
giúp mình vs
1. giá trị m đẻ khoảng cách từ điểm M( 0;3) đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y= x^3 +3mx+1 bằng \(\dfrac{2}{\sqrt{5}}\)
2. cho h/s y= 2x^3 + 3( m-1)x^2+ 6(m-2)x-1. xác định m để h/s có điểm cực đại và cực tiểu nằm trong khoảng (-2;3)
3.cho h/s y= \(\dfrac{1}{3}x^3-\left(m+1\right)x^2+\left(2m+1\right)x-\dfrac{4}{3}\) . tìm tất cả các giá trị của tham số m>0 đẻ đò thị hàm số có điểm cực đại thuộc trục hoành
Tìm cực trị của các hàm số sau :
a) \(y=-2x^2+7x-5\)
b) \(y=x^3-3x^2-24x+7\)
c) \(y=x^4-5x^2+4\)
d) \(y=\left(x+1\right)^3\left(5-x\right)\)
e) \(y=\left(x+2\right)^2\left(x-3\right)^3\)
tìm m để y=\(\dfrac{1}{3}x^3+\left(m^2-1\right)x^2+\left(2m-3\right)x+2\) đạt cực đại tại x=2
b) tìm m để y=\(\dfrac{1}{3}x^3+mx^2+3x+1\) đạt cực đại tại x=-3
tìm m để hàm số \(y=\dfrac{x^2+\left(1-m\right)x-2}{x+m}\) đạt cực tiểu tại x=0
Có bn giá trị ngyên của tham số m để hs y =\(\dfrac{x^3}{3}-\dfrac{\left(m-1\right).x^2}{2}+\left(m+2\right).x-m\) có điểm cực trị thuộc khoảng (2;9)