Cho hàm số y=f(x)=\(\left\{{}\begin{matrix}2x^3-3\left(m+1\right)x^2+6mx-2\left(x< =3\right)\\nx+46\left(x>3\right)\end{matrix}\right.\)
trong đó m,n thuộc R. Tính tổng tất cả các giá trị nguyên của tham số m để hàm số y=f(x) có đúng ba điểm cực trị
1.y=\(\dfrac{1}{3}x^3-2mx^2+3x+1\) tìm m để hs có cực đại, cực tiểu
2. y=\(x^3-mx^2+\left(m^2-6\right)x+1\) tìm m để hs đạt cực trị tại x=1, khi đó hs là điểm cực đại hay cực tiểu
Cho hàm số \(y=2x^3+3\left(m-1\right)x^2+6\left(m-2\right)x-1\) với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và cực tiểu nằm trong khoảng (-2;3)
giúp mình vs
1. giá trị m đẻ khoảng cách từ điểm M( 0;3) đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y= x^3 +3mx+1 bằng \(\dfrac{2}{\sqrt{5}}\)
2. cho h/s y= 2x^3 + 3( m-1)x^2+ 6(m-2)x-1. xác định m để h/s có điểm cực đại và cực tiểu nằm trong khoảng (-2;3)
3.cho h/s y= \(\dfrac{1}{3}x^3-\left(m+1\right)x^2+\left(2m+1\right)x-\dfrac{4}{3}\) . tìm tất cả các giá trị của tham số m>0 đẻ đò thị hàm số có điểm cực đại thuộc trục hoành
Tìm tất cả các giá trị thực của tham số \(m\) để khoảng cách từ điểm \(M\left(0;3\right)\) đến đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \(y=x^3+3mx+1\) bằng \(\dfrac{2}{\sqrt{5}}\)
Tìm m để hàm số y = \(\dfrac{m-1}{3}.x^3+\left(m^2-4\right).x^2+\left(m^2-9\right)x+2\) không có cực trị
Câu 6. Tìm các giá trị thực của tham số \(m\) để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3.
A. \(m=1,m=5\)
B. \(m=5\)
C. \(m=1\)
D. \(m=-1\)
Tìm tất cả các giá trị thực của thẩm số m để hàm số \(Y=\left(m+1\right)x^4-mx^2+\dfrac{3}{2}\) chỉ có cực tiểu mà không có cực đại
A.m<1
B.-1≤m≤0
C.m>1
D.-1≤m≤0
Cho f(x) = \(\dfrac{1}{4}x^4-2x^3+\dfrac{3}{2}\left(m+2\right)x^2-\left(m+6\right)x+1\)
a, Tìm m để hàm số có 3 cực trị.
b, Viết phương trình parabol đi qua 3 điểm cực trị của ĐTHS