Bài 2: Cực trị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần T.Anh

tìm m để hàm số \(y=\dfrac{x^2+\left(1-m\right)x-2}{x+m}\) đạt cực tiểu tại x=0

Nguyễn Việt Lâm
27 tháng 7 2021 lúc 22:39

\(y'=\dfrac{x^2+2mx-m^2+m+2}{\left(x-m\right)^2}\)

Hàm đạt cực trị tại \(x=0\Rightarrow y'=0\) có nghiệm \(x=0\)

\(\Rightarrow\dfrac{-m^2+m+2}{m^2}=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

- Với \(m=-1\Rightarrow y=\dfrac{x^2+2x-2}{x-1}\Rightarrow y'=\dfrac{x^2-2x}{\left(x-1\right)^2}\)

\(\Rightarrow y''=\dfrac{2}{\left(x-2\right)^3}< 0\) tại \(x=0\Rightarrow x=0\) là cực đại (ko thỏa mãn)

- Với \(m=2\Rightarrow y=\dfrac{x^2-x-2}{x+2}\Rightarrow y'=\dfrac{x^2+4x}{\left(x+2\right)^2}\)

\(\Rightarrow y''=\dfrac{8}{\left(x+2\right)^3}>0\) tại \(x=0\Rightarrow\) thỏa mãn

Vậy \(m=2\)


Các câu hỏi tương tự
nguyen thi be
Xem chi tiết
nguyen thi be
Xem chi tiết
Minh Hảo Nguyễn Thị
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
12332222
Xem chi tiết
Quân Trương
Xem chi tiết
Nguyễn Đức Đạt
Xem chi tiết
xữ nữ của tôi
Xem chi tiết
Đinh Công Duy
Xem chi tiết