Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ẹih bw
Xem chi tiết

Câu 3:

b: Xét ΔCHA vuông tại H và ΔCAB vuông tại A có

\(\hat{HCA}\) chung

Do đó: ΔCHA~ΔCAB

=>\(\frac{CH}{CA}=\frac{CA}{CB}\)

=>\(CH\cdot CB=CA^2\)

Câu 4:

a: Xét ΔMAD và ΔMBN có

\(\hat{MAD}=\hat{MBN}\) (hai góc so le trong, AD//BN)

\(\hat{AMD}=\hat{BMN}\) (hai góc đối đỉnh)

Do đó: ΔMAD~ΔMBN

b: ΔMAD~ΔMBN

=>\(\frac{MA}{MB}=\frac{MD}{MN}\)

=>\(MA\cdot MN=MB\cdot MD\)

Bear XD
Xem chi tiết
Bear XD
17 tháng 5 2023 lúc 22:46

mình cần gâps huhu

 

Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 22:48

Mở ảnh

=>AM=AN

Trân Thah
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 18:47

Sửa đề: B,D,C,E

BD\(\perp\)AC

=>\(\widehat{BDC}=\widehat{ADB}=90^0\)

CE\(\perp\)AB

=>\(\widehat{AEC}=\widehat{BEC}=90^0\)

Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

Do đó: BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc một đường tròn

Mạnh
Xem chi tiết
Anh Quynh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 20:51

a: Xét tứ giác AEHD có 

\(\widehat{AEH}+\widehat{ADH}=180^0\)

nên AEHD là tứ giác nội tiếp

hay A,E,H,D cùng thuộc 1 đường tròn

b: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}\)

nên BEDC là tứ giác nội tiếp

hay B,E,D,C cùng thuộc 1 đường tròn

Vũ Bùi Trung Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 17:45

a) Gọi G là trung điểm của BC

Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)

mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)

mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: G là trung điểm của BC(gt)

nên \(BG=CG=\dfrac{BC}{2}\)(3)

Từ (1), (2) và (3) suy ra GB=GC=GE=GD

hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 12 2018 lúc 13:14

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác BDEC có:

∠(BEC) = ∠(BDC) =  90 0

Mà 2 góc này cùng nhìn cạnh BC

⇒ Tứ giác BDEC là tứ giác nội tiếp

Nguyễn Thanh Quỳnh
Xem chi tiết
Ẩn danh
Xem chi tiết

Bài 1; Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH⊥BC

Ta có: BH⊥AC

CK⊥CA

Do đó: BH//CK

Ta có: CH⊥AB

BK⊥BA

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

Bài 2:

Xét tứ giác AMDN có

AM//DN

AN//DM

Do đó: AMDN là hình bình hành

Ta có; MD//AC

=>\(\hat{MDB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{MBD}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{MBD}=\hat{MDB}\)

=>MB=MD

=>ΔMBD cân tại M

DM+DN

=BM+AM

=AB

Bài 4:

Ta có: \(AE=EB=\frac{AB}{2}\)

\(DF=FC=\frac{DC}{2}\)

mà AB=CD

nên AE=EB=DF=FC

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

=>AF//CE

Xét ΔDNC có

F là trung điểm của DC

FM//NC

Do đó: M là trung điểm của DN

=>DM=MN(1)

Xét ΔBAM có

E là trung điểm của BA

EN//AM

Do đó: N là trung điểm của BM

=>BN=NM(2)

Từ (1),(2) suy ra DM=MN=NB

01_ Thu An 9/7
Xem chi tiết
Thanh Hoàng Thanh
24 tháng 2 2022 lúc 8:41

a) Xét tứ giác ADHE:

\(\widehat{AEH}+\widehat{ADH}=90^o+90^o=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) Tứ giác ADHE nội tiếp (dhnb). 

b) Xét tứ giác BEDC:

\(\widehat{BEC}=\widehat{BDC}\left(=90^o\right).\)

Mà 2 đỉnh E; D kề nhau, cùng nhìn cạnh BC.

\(\Rightarrow\) Tứ giác BEDC nội tiếp (dhnb).

c) Sửa đề: Góc ACD \(\rightarrow\) Góc ACB.

Tứ giác BEDC nội tiếp (cmt).

\(\Rightarrow\widehat{AED}=\widehat{ACD}.\)

d) Tứ giác BEDC nội tiếp (cmt).

\(\Rightarrow\widehat{EDB}=\widehat{ECB}.\)