Cho hình bình hành ABCD có AC > BD. Kẻ C E ⊥ A B tại E, C F ⊥ A D tại F, B H ⊥ A C tại H và D K ⊥ A C tại K. Chứng minh
a) A B A C = A H A E ;
b) A D . A F = A K . A C ;
c) A D . A F + A B . A E = A C 2 .
Cho hình bình hành ABCD, E đối xứng D qua A, F đối xứng D qua C.
a)Tứ giác AEBC,ABFC là hình gì?
b)Chứng minh: E đối xứng F qua B.
c)Hình bình hành ABCD thêm điều kiện gì thì E đối xứng F qua BD.
d) AC cắt BD tại O, CH vuông góc với BD(H thuộc BD), nếu BCH=HCO=OCD thì hình bình hành ABCD là hình gì?
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Cho hình bình hành ABCD O là giao của 2 đường chéo AC,BD từ O kẻ đường thẳng a cắt AB,CD lần lượt tại E,F kẻ đường thẳng b cắt AD,BC lần lượt tại G,H. CM EFGH là hình bình hành
cho hình bình hành ABCD có AC > BD kẻ CE vuông góc vs AB tại E,CF vuông góc vs AD tại F,BH vuông góc vs AC tại H,DK vuông góc vs AC tại K
a,AB .AE=AH.AC
b,AD.AF=AK.AC
c,AH+AK=AC và AB.AE+AD.À=AC^2
a,\(\Delta AHB\&\Delta AEC\)có: \(\widehat{A}chung,\widehat{AEC}=\widehat{AHB}=90^o\)
\(\Rightarrow\Delta AHB\infty\Delta AEC\left(g.g\right)\Rightarrow\frac{AH}{AE}=\frac{AB}{AC}\Rightarrow AB.AE=AH.AC\)
b,\(\Delta AKD\&\DeltaÀFC\)CÓ: \(\widehat{A}chung,\widehat{AFC}=\widehat{AKD}=90^o\)
\(\Rightarrow\Delta AKD\infty\DeltaÀFC\left(g.g\right)\Rightarrow\frac{AK}{AF}=\frac{AD}{AC}\Rightarrow AD.AF=AK.AC\)
c, Vì ABCD là hbh => AB=DC
--------------------- => AB//CD => GÓC BAC=ACD (SO LE TRONG)
Xét tam giác ABH và tam giác CDK có:
Tam giác ABH vuông tại H
----------- CDK ------------- K
cạnh huyền AB=CD
góc nhọn BAC=ACD
=> tam giác ABH = tam giác CDK
=> AH=KC
ta có: AC = AH + HC
Mà: AH=KC
=> AC = AH+HK+AH
=> AC = AH + AK
Ta có: AB.AE+AD.AF = AH.AC+AK.AC = AC.(AH+AK) = AC.AC = AC2
Cho hình bình hành ABCD, góc A nhọn. Kẻ DE _|_ AB tại E, DF _|_ CB tại F. AC cắt BD tại O.
a, CM : Tam giác EOF cân tại O.
b, Cho FO cắt AD tại Q. Tứ giác BQDF là hình gì? CM
c, Góc BAD = 60o. Tính góc EOF
d, Hình bình hành ABCD có điều kiện gì để OE // AD
Bạn tự vẽ hình nhé:
Mình chỉ gợi ý thôi nhé:
a, Tam giác BED vuông ở E có EO = BO = DO .
Tam giác BFD vuông ở F có: FO = OB = OD
=> EO = FO
=> Tam giác EOF cân ở O.
b, Xét tam giác QAO = tam giác FCO ( g - c - g)
=> OQ=OF
Xét tứ giác FBQD có hai đường chéo cắt nhau tại trung điểm mỗi đường nên FBQD là hình bình hành mà có góc BFD = 90 độ
=> Tứ giác FBQD là hình chữ nhật.
c, Tự chứng minh: tam giác EOB và OBF cân ở O.
Góc BAD = 60 độ => Góc ABC = 120 độ
Có góc EOF = EOB + BOF = ( 180 - 2. OBE ) + ( 180 - 2.OBF ) = 360 - 240 = 120 độ
d, Khi OE//AD => EO // BC.
Mà trong tam giác ABC có OA=OC => EA=EB
=> DE là đường trung tuyến và cũng là đường cao trong tam giác ADB.
=> Tam giác ADB cân ở D có góc BAD = 60 độ
=> Tam giác ADB đều.
=> AD = AB
=> AB = BC = CD=DA
=> Tứ giác ABCD là hình thoi.
Cho hình bình hành ABCD (góc A nhọn) gọi E, F lần lượt là trung điểm của AB và CD đường thẳng AC cắt các đường thẳng DE, BF lần lượt tại M và N.
a) Chứng minh DEBF là hình bình hành.
b) AC cắt BD tại O chứng minh E, O, F thẳng hàng.
c) hình bình hành ABCD có điều kiện gì thì tứ giác DEBF là hình thoi.
d) chứng minh AM = MN = NC sau đó tính tỉ số diện tích của tứ giác MENF và tứ giác ABCD
a Xét tứ giác DEBF có
BE//DF
BE=FD
Do đó; DEBF là hình bình hành
=>DB cắt EF tại trung điểm của mỗi đường(1)
b: Vì ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mõi đường(2)
Từ (1), (2) suy ra AC,BD,EF đồng quy
=>E,O,F thẳng hàng
Cho hình bình hành ABCD (AB>AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C, kẻ đường thẳng vuông góc với BD tại F cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) CM: AF//CE
c) CM: AC, EF, KI đồng quy
bạn tham khảo nha
https://cdn.lazi.vn/storage/uploads/edu/answer/1628930843_lazi_652558.jpg
Cho hình bình hành ABCD có AB > AD . qua A kẻ đg thg vuông BD tại E , cắt CD tại I . qua C kẻ đg thg vuông BD tại F , cắt AC tại K
1) Chứng minh : AE // CF và AE = CF
2) Tứ giác AECI là hình gì ? Vì sao ?
Đầu bài vô lí qua CK kẻ đg thg vuông BD tại F , cắt AC tại K
1: Ta có: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF
1.Cho hình bình hành ABCD .Gọi M và N là các trung điểm của AD và BC
a)C/m BM//DN
b)C/m AC ,BD và MN đồng quy
c)AC cắt BM và CN tại E và F , BF cắt CD tại K .C/m DE=2KF
2.Cho hình bình hành ABCD .Trên các cạnh AB,CD lấy điểm E,F sao cho AE=CF
a) C/m BDEF là hình bình hành
b)C/m AC ,BD và EF đồng quy
c)CD và BF cắt AC tại H và K . C/m AH=CK
1:
a: Xét tứ giác BMDN có
DM//BN
DM=BN
Do đó: BMDN là hình bình hành
Suy ra: BM//DN