Cho hình thang ABCD (AB // CD). Biết ∠ A = 3 ∠ D . Số đo góc A là:
A. 45 °
B. 135 °
C. 90 °
D. 75 °
cho hình thang ABCD (AB//CD). tính số đo góc B và góc D biết góc A = 140 độ, góc c = 45 độ
Vì AB//CD (gt) ⇒ A+D=1800 ➩1400 + D = 180o ⇒ D = 40o
⇒B + C =180o ⇒ B + 45o = 180o ⇒ B + 45o = 180o ⇒ B=135o
Ta có: AB//CD(gt)
nên \(\widehat{A}+\widehat{D}=180^0\)
hay \(\widehat{D}=40^0\)
Ta có: AB//CD(gt)
nên \(\widehat{B}+\widehat{C}=180^0\)
hay \(\widehat{B}=135^0\)
Bài 1: Cho hình thang cân ABCD ( AB// CD ) có góc A= 2 góc C. Tính số đo các góc hình thang
Bài 2: Cho hình thang cân ABCD ( AB// CD ) có góc A= 3 góc D. Tính số đo các góc của hình thang
Bài 3: Cho hình tam giác ABC cân tại A. Qua điểm M trên cạnh AB kẻ đường thằng song song với BC cắt cạnh ACtại N
1, Tứ giác BMNC là hình gì? Vì sao?
2, So sánh diện tích MNB và diện tích MNC
3, CM diện tích ABN= diện tích ACM
Bafi1: Do AB // CD ( GT )
⇒ˆA+ˆC=180o
⇒2ˆC+ˆC=180o
⇒3ˆC=180o
⇒ˆC=60o
⇒ˆA=60o.2=120o
Do ABCD là hình thang cân
⇒ˆC=ˆD
Mà ˆC=60o
⇒ˆD=60o
AB // CD ⇒ˆD+ˆB=180o
⇒ˆB=180o−60o=120o
Vậy ˆA=ˆB=120o;ˆC=ˆD=60o
Bài 2:
Ta có; AB//CD
\(\Rightarrow\)góc BAD+ góc ADC= \(180^o\)
^A=3. ^D \(\Rightarrow\)\(\dfrac{A}{3}\)=^D
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{A}{3}=\dfrac{D}{1}=\dfrac{A+D}{3+1}=\dfrac{180^O}{4}=45^O\)
\(\Rightarrow\)^A= \(135^O\)
\(\Rightarrow\)^D=\(45^o\)
\(\Rightarrow B=A=135^o\)
\(\Rightarrow C=D=45^o\)
1. Cho hình thang ABCD có góc A = góc D = 90 độ , đáy nhỏ AB = a , cạnh bên BC = 2 a . Gọi M , N lần lượt là trung điểm AD , AB
a / Tính số đo các góc ABC , BAN
b/ Chứng minh tam giác NAD đều
c/ Tính MN theo a
2. a/ Tính các góc A , góc B của hình thang ABCD ( AB // CD ) biết góc C = 70 độ , góc D = 40 độ
b/ Cho hình thang ABCD có AB // CD và góc A = góc D . Chứng minh rằng ABCD là hình thang vuông cà AC^2 + BD^2 = AB^2 + CD^2 + 2AD^2
3. Cho tứ giác ABCD :
a/ Chứng minh rằng AB + CD < AC + BD
b/ Cho biết AB + BD < hoặc = AC + CD
Chứng minh rằng AB < AC
4. Cho hình thang ABCD có AC vuông góc BD . CHứng minh rằng :
a/ AB^2 + CD^2 = AD^2 + BC^2
b/ ( AB + CD )^2 = AC^2 + BD^2
bạn hỏi thế này thì chả ai muốn làm -_- dài quá
Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!
dài quà làm sao mà có thòi gian mà trả lời .bạn hỏi ít thoi chứ
Cho hình thang ABCD ( AB//CD) có góc D =60 độ.
a) Tính số đo các góc của hình thang.
b) Cho biết AD=AB. Tính tỉ số AB/CD
tính các số đo của hình thang ABCD ( AB // CD ), biết rằng góc A= 1/3 góc D, góc B - góc C = 50 độ
Cho hình thang cân ABCD , AB//CD, AC vuông góc vs BC, DB là tia phân giác của góc D
a, CM góc BCD= 2. góc BDC
b, Tính số đo các góc của hình thang ABCD.
c, Biết BC=3 cm. Tính diện tích hình thang ABCD
Cho hình thang ABCD ( AB//CD) có A=3D, B=C, AB= căn 2 cm, BC=3cm, CD= 4cm
1. CMR: A+D=B+C
2. Tính số đo các góc của hình thang
3. Tính đường cao và S(ABCD)
1: AB//CD
=>góc A+góc D=180 độ và góc B+góc C=180 độ
=>góc A+góc D=góc B+góc C
2: góc A+góc D=180 độ
góc A=3*góc D
=>góc A=3/4*180=135 độ và góc D=180-135=45 độ
góc B=góc C
góc B+góc C=180 độ
=>góc B=góc C=180/2=90 độ
1.Cho hình thang cân ABCD(AB//CD), góc BDC=45o. Gọi O là giao điểm của AC và BD.
a. CM tam giác DOC vuông cân
b. Tính diện tích của hình thang ABCD, biết BD=6cm
2. a. Tìm x của tứ giác ABCD, biết góc A=60 độ, góc C= 90 độ, góc D=63 độ
b. Cho hình thang ABCD(AB//CD). E,F lần lượt là trung điểm AD, BC. Tính độ dài đoạn thẳng EF, biết AB=3cm,CD=9cm
1/Cho hình thang ABCD ( AB//CD), biết góc A = 100 độ, góc B =120 độ, tìm số đo góc C và góc D
2/Hình thang Câ ABCD có đáy nhỏ AB =10 cm, đáy lớn CD =20 cm và đường cao AH = 12cm. Tính độ dài cạnh bên
Do AB//CD
=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )
1000 + \(\widehat{D}\)=1800
\(\widehat{D}\)=1800 - 1000
\(\widehat{D}\)= 800
Xét tứ giác ABCD có :
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600
1000+1200+\(\widehat{C}\)+800 =3600
3000 +\(\widehat{C}\)=3600
\(\widehat{C}\)= 600
2) Từ B kẻ BE \(\perp\)CD
Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:
AD=BC (tính chất hình thang cân)
\(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)
=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )
=) DH= CE (2 cạch tương ứng )
Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB
Xét tứ giác ABEH có
\(\widehat{BAH}\)= \(\widehat{AHE}\) = \(\widehat{BEH}\) = 900
=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm
Ta có : DH+HE+EC= 20 cm
2DH+10=20
2DH =10
DH = 5 (cm)
xét tam giác vuông AHD
Áp dụng định lí Pitago ta có
AD2=AH2+HD2
AD2=122+52
AD2= 144+25=169
AD=13 cm (đpcm)