Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Lương
Xem chi tiết
Lê Đức Lương
Xem chi tiết
Nguyễn Thị Mỹ vân
Xem chi tiết
Trên con đường thành côn...
27 tháng 8 2021 lúc 21:55

undefined

Ngô Thành Chung
27 tháng 8 2021 lúc 22:00

Pox Pox
Xem chi tiết
HD Film
20 tháng 10 2019 lúc 11:29

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

Khách vãng lai đã xóa
HD Film
20 tháng 10 2019 lúc 11:35

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khách vãng lai đã xóa
HD Film
20 tháng 10 2019 lúc 11:43

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Từ (a) -> hoặc a+b+c = 0 hoặc a=b=c. Vậy ko thể khẳng định như vây

Khách vãng lai đã xóa
Nguyễn Hà Quang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 10:20

a+b+c=1; a>0; b>0; c>0

=>a>=b>=c>=0

=>a(a-c)>=b(b-c)>=0

=>a(a-b)(a-c)>=b(a-b)(b-c)

=>a(a-b)(a-c)+b(b-a)(b-c)>=0

mà (a-c)(b-c)*c>=0 và c(c-a)(c-b)>=0 

nên a(a-b)(a-c)+b(b-a)(b-c)+(a-c)(b-c)*c>=0

=>a^3+b^3+c^3+3acb>=a^2b+a^2c+b^2c+b^2a+c^2b+c^2a

=>a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ac)

=>a^3+b^3+c^3+6abc>=(ab+bc+ac)

mà a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

nên 2(a^3+b^3+c^3)+3acb>=a^2+b^2+c^2>=ab+bc+ac(ĐPCM)

Châu Anh Minh
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 4 2022 lúc 12:37

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)

\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

Do đó:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}.3.\left(a+b+c\right)\ge\dfrac{8}{3}\sqrt{3\left(ab+bc+ca\right)}=8\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

Châu Anh Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2023 lúc 13:27

a+b>=2căn ab

b+c>=2*căn bc

a+c>=2*căn ac

=>(a+b)(b+c)(a+c)>=2*2*2*căn ab*bc*ac=8

Vô Danh Tiểu Tốt
Xem chi tiết
Ko Cần Chs
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 0:00

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)