Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trần Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 11 2023 lúc 22:20

1: \(2^x=64\)

=>\(x=log_264=6\)

2: \(2^x\cdot3^x\cdot5^x=7\)

=>\(\left(2\cdot3\cdot5\right)^x=7\)

=>\(30^x=7\)

=>\(x=log_{30}7\)

3: \(4^x+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)

=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)

=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)

=>\(2^x-1=0\)

=>\(2^x=1\)

=>x=0

4: \(9^x-4\cdot3^x+3=0\)

=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)

Đặt \(a=3^x\left(a>0\right)\)

Phương trình sẽ trở thành:

\(a^2-4a+3=0\)

=>(a-1)(a-3)=0

=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)

5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)

=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)

=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)

=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)

=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)

=>\(3^{x+1}-2=0\)

=>\(3^{x+1}=2\)

=>\(x+1=log_32\)

=>\(x=-1+log_32\)

6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\) 

=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)

Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)

Phương trình sẽ trở thành:

\(\dfrac{1}{b}+b=2\)

=>\(b^2+1=2b\)

=>\(b^2-2b+1=0\)

=>(b-1)2=0

=>b-1=0

=>b=1

=>\(\left(2+\sqrt{3}\right)^x=1\)

=>x=0

7: ĐKXĐ: \(x^2+3x>0\)

=>x(x+3)>0

=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)

=>\(x^2+3x=4^1=4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)

Tạ Tương Thái Tài
Xem chi tiết
Vũ Nguyễn Gia Hiển
7 tháng 5 2016 lúc 14:15

Đặt \(2^x=a;3^x=b;a>0;b>0\)

Bất phương trình trở thành :

\(a+a^2+2ab>2a+4b+2\Leftrightarrow\left(a+2b+1\right)\left(a-2\right)>0\Leftrightarrow a>2\)

Suy ra \(2^x>2\Leftrightarrow x>1\)

Vậy tập nghiệm của bất phương trình là \(S=\left(1;+\infty\right)\)

Kagamine Len
Xem chi tiết
Đào Thị Hương Lý
Xem chi tiết
Nguyễn Thị Quỳnh Như
14 tháng 4 2016 lúc 21:14

\(1+\log_2\left(9^x-6\right)=\log_2\left(4.3^x-6\right)\)

Điều kiện : \(\begin{cases}9^x>6\\3^x>\frac{3}{2}\end{cases}\) \(\Leftrightarrow x>\log_96\)

\(1+\log_2\left(9^x-6\right)=\log_2\left(4.3^x-6\right)\Leftrightarrow9^x-2.3^x-3=0\)

                                                        \(\Leftrightarrow\begin{cases}3^x=-1\\3^x=3\end{cases}\)  \(\Leftrightarrow3^x=3\Leftrightarrow x=1\) (thỏa mãn điều kiện)

Kết luận \(x=1\)

 

Hoàng Thúy An
30 tháng 9 2017 lúc 12:08
hai
Trọng Sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 8:50

Câu 1: D

Câu 2: A

Câu 3: B

Câu 4: A

Câu 5: C

Câu 6: D

Vũ Quang Huy
6 tháng 3 2022 lúc 8:51

D

 A

 B

A

 C

D

người hướng nội
6 tháng 3 2022 lúc 8:53

 1: D

2: A

 3: B

 4: A

 5: C

 6: D

 
Phạm Thanh Lâm
Xem chi tiết
Phạm Trung Đức
Xem chi tiết
Nguyễn Huy Tú
19 tháng 3 2022 lúc 19:56

chọn A

Hạ Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2023 lúc 10:10

1B

2D

3A

4A

5B

6:

a: \(A=\dfrac{14+2}{3}=\dfrac{16}{3}\)

b: P=A*B

\(=\dfrac{x+2}{3}\cdot\dfrac{2x^2+6x-2x^2-3x-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x+2}{3}\cdot\dfrac{3x-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{x+2}{x+3}\)

Nguyễn Minh Dương
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
26 tháng 9 2023 lúc 15:24

`#3107.\text {DN}`

\(3^{x+2}+4\cdot3^{x+1}+3^{x-1}=6^6\)

`=> 3^x*3^2 + 4*3^x*3 + 3^x * 1/3 = 6^6`

`=>3^x*(3^2 + 12 + 1/3) = 6^6`

`=> 3^x * 64/3 = 6^6`

`=> 3^x = 6^6 \div 64/3`

`=> 3^x = 2187`

`=> 3^x = 3^7`

`=> x = 7`

Vậy, `x = 7.`