Mệnh đề: “Tổng của hai số hữu tỷ nghịch đảo của nhau” được biểu thị bởi
A. a + 2 a ( a ∈ Q ; a ≠ 0 )
B. a + a 2 ( a ∈ Q ; a ≠ 0 )
C. a + a ( a ∈ Q ; a ≠ 0 )
D. a + 1 a ( a ∈ Q ; a ≠ 0 )
Mệnh đề: “ Tổng các lập phương của hai số a và b ” được biểu thị bởi
A. a 3 + b 3
B. a + b 3
C. a 2 + b 2
D. a + b 2
Tổng các lập phương của hai số a và b là a 3 + b 3
Chọn đáp án A
Với mỗi số thực x, xét các mệnh đề P : "x là một số hữu tỉ"; Q : "\(x^2\) là một số hữu tỉ"
a) Phát biểu mệnh đề \(P\Rightarrow Q\) và xét tính đúng sai của nó ?
b) Phát biểu mệnh đề đảo của mệnh đề trên ?
c) Chỉ ra một giá trị của x mà mệnh đề đảo sai ?
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.
b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"
c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai
Với hai số thực a và b, xét mệnh đề P: “\({a^2} < {b^2}\)” và Q: “\(0 < a < b\)”
a) Hãy phát biểu mệnh đề \(P \Rightarrow Q\);
b) Hãy phát biểu mệnh đề đảo của mệnh đề ở câu a.
c) Xác định tính đúng sai của mỗi mệnh đề ở câu a và câu b.
a) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì \(0 < a < b\)”
b) Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)”
c) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì \(0 < a < b\)” sai,
Chẳng hạn \(a = 2;\;b = -3\) ta có: \({2^2} < {( - 3)^2}\) nhưng không suy ra \(0<2<-3\).
Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)” đúng.
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình bình hành”.
Q: “Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
a) Phát biểu mệnh đề \(P \Rightarrow Q\) và xét tính đúng sai của nó.
b) Phát biểu mệnh đề đảo của mệnh đề \(P \Rightarrow Q\).
a) Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình bình hành thì nó có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.
Mệnh đề này đúng vì “hai đường chéo cắt nhau tại trung điểm của mỗi đường” là tính chất của hình hình hành.
b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\), được phát biểu là: “Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì nó là hình bình hành”.
Mệnh đề: “Tổng các bình phương của hai số nguyên lẻ liên tiếp” được biểu thị bởi
A. ( 2 n + 1 ) 2 ⋅ ( 2 n + 3 ) 2 ( n ∈ Z )
B. ( 2 n + 1 ) 2 + ( 2 n + 3 ) 2 ( n ∈ Z )
C. ( 2 n + 1 ) 3 + ( 2 n + 3 ) 3 ( n ∈ Z )
D. ( 2 n + 1 ) + ( 2 n + 3 ) ( n ∈ Z )
Gọi hai số nguyên lẻ liên tiếp là 2n + 1 và 2n + 3 với (n ∈ Z)
Bình phương của hai số nguyên lẻ liên tiếp đó là ( 2 n + 1 ) 2 v à ( 2 n + 3 ) 2
Tổng các bình phương của hai số nguyên lẻ liên tiếp là ( 2 n + 1 ) 2 + ( 2 n + 3 ) 2
Chọn đáp án B.
Viết biểu thức đại số biểu thị
a) Nghịch đảo của tổng 2 số a và b
b) bình phương của hiệu 2 số x và y
Cho a là số tự hiên, xét các mệnh đề P : "a có tận cùng là 0", Q : "a chia hết cho 5"
a) Phát biểu mệnh đề \(P\Rightarrow Q\) và mệnh đề đảo của nó;
b) Xét tính đúng sai của cả hai mệnh đề trên
a) \(\left(P\Rightarrow Q\right):\) "Nếu a có tận cùng bằng 0 thì a chia hết cho 5".
Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)"Nếu a chia hết cho 5 thì a có tận cùng bằng 0"
b) \(\left(P\Rightarrow Q\right):\) đúng. \(\left(Q\Rightarrow P\right):\) sai
Dùng các kí hiệu để viết các câu sau và viết mệnh đề phủ định của nó.
a) Có một số hữu tỉ mà nghịch đảo của nó lớn hơn chính nó.
\(a,\exists x\in Q:x< \dfrac{1}{x}\)
Xét hai mệnh đề:
P: “Tứ giác ABCD là hình vuông”;
Q: “Tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau”.
a) Phát biểu mệnh đề \(P \Rightarrow Q\) và mệnh đề đảo của nó.
b) Hai mệnh đề P và Q có tương đương không? Nếu có, sử dụng thuật ngữ “điều kiện cần và đủ” hoặc “khi và chỉ khi” để phát biểu định lí \(P \Leftrightarrow Q\) theo hai cách khác nhau.
a)
Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình vuông thì nó là hình chữ nhật có hai đường chéo vuông góc với nhau”
Mệnh đề \(Q \Rightarrow P\): “Nếu tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau thì nó là hình vuông”
b)
Theo dấu hiệu nhận biết hình vuông, hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\) đều đúng. Do đó, P và Q là hai mệnh đề tương đương. Ta có thể phát biểu thành định lí như sau:
“Tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau là điều kiện cần và đủ để nó là hình vuông”
Hoặc “Tứ giác ABCD là hình vuông khi và chỉ khi nó là hình chữ nhật có hai đường chéo vuông góc với nhau”