Tìm tham số m để đường thẳng d: y = (m – 2)x + 3m và parabol (P): y = x 2 cắt nhau tại hai điểm phân biệt nằm bên trái trục tung
A. m < 3
B. m > 3
C. m > 2
D. m > 0
Tìm tham số m để đường thẳng d: y = mx + m + 1 và parabol (P): y = x 2 cắt nhau tại hai điểm phân biệt nằm bên trái trục tung.
A. m < 0 m ≠ - 2
B. m < - 1 m ≠ - 2
C. m > −1
D. m ≥ −2
Cho parabol (P): y = x^2 và đường thẳng (d): y = x + m − 1. Tìm m để đường thẳng
(d) cắt parabol (P) tại hai điểm phân biệt ở bên trái trục tung.
Xét pt hoành độ gđ của parabol và d có:
\(x^2=x+m-1\)
\(\Leftrightarrow x^2-x+1-m=0\) (1)
Để (P) và (d) cắt nhau tại hai điểm pb bên trái trục tung
\(\Leftrightarrow\) Pt (1) có hai nghiệm âm pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=1< 0\left(vl\right)\\P=1-m>0\end{matrix}\right.\)\(\Rightarrow\) Không tồn tại m để (d) cắt (P) tại hai điểm pb ở bên trái trục tung
Vậy...
Phương trình hoành độ giao điểm là:
\(x^2-x-m+1=0\)
a=1; b=-1; c=-m+1
\(\Delta=b^2-4ac\)
\(=\left(-1\right)^2-4\left(-m+1\right)\)
\(=1+4m-4\)
=4m-3
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow m>\dfrac{3}{4}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1x_2=\dfrac{c}{a}=\dfrac{-m+1}{1}=-m+1\end{matrix}\right.\)
Để (d) cắt (P) tại hai điểm phân biệt nằm ở bên trái trục tung thì
\(\left\{{}\begin{matrix}m>\dfrac{3}{4}\\x_1+x_2< 0\left(loại\right)\\x_1x_2>0\end{matrix}\right.\)
Vậy: \(m\in\varnothing\)
Tìm m ∈ ℤ để parabol (P): y = x 2 cắt đường thẳng d: y = (m – 1) x + m 2 – 16 tại hai điểm phân biệt nằm bên trái trục tung.
A. m ∈ {−4; −3; −2; −1}
B. m ∈ ∅
C. m ∈ {−3; −2; −1; 0; 1; 2; 3}
D. m ∈ {−3; −2; −1; 0; 2; 3}
Trong mặt phẳng tọa độ oxy cho parabol p y = x bình và đường thẳng d có dạng y = mx + m+1 a) với m =1 Tìm tọa độ giao điểm của đường thẳng d với hai trục tọa độ b) tính giá trị của m để đường thẳng d cắt parabol p tại 2 điểm phân biệt nằm về bên trái của đường thẳng x = 2
Cho parabol (P): y = x 2 và đường thẳng d: y = ( m 2 + 2 ) x – m 2 . Tìm m để d cắt (P) tại hai điểm phân biệt nằm về bên phải trục tung.
A. m > 0
B. m ∈ ℝ
C. m ≠ 0
D. m < 0
Tìm m sao cho parabol (P) y= 2x2 cắt đường thẳng (d)
y= ( 3m +1 )x - 3m +1 tại hai điểm phân biệt nằm bên phải trục tung
phuong trinh hoanh do giao diem cua (P) va (d):
2x2= (3m+1)x- 3m+1 <=> 2x^2 - (3m+1)x + 3m-1=0 (1)
Để (P) cat (d) tai hai điểm phan biet thì phuong trinh (1) có hai nghiệm phân biệt. <=> đenta >0
Xét đen ta = (3m+1)2-8(3m-1) = 9m2 + 6m+1 - 24m +8= 9m2- 18m+ 9
9(m+1)2 >0 <=> m khac -1
Vậy ....
Cho parabol (P): y = x^2 và đường thẳng (d): y = mx + m + 3. Tìm m để đường thẳng
(d) cắt parabol (P) tại hai điểm phân biệt ở bên phải trục tung.
Xét pt hoành độ gđ của (P) và (d) có:
\(x^2=mx+m+3\)
\(\Leftrightarrow x^2-mx-m-3=0\) (I)
Để (d) cắt (P) tại hai điểm pb ở bên phải trục tung
\(\Leftrightarrow\) Pt (I) có hai nghiệm dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2+4m+12>0\left(lđ\right)\\m>0\\-m-3>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< -3\end{matrix}\right.\)\(\Rightarrow m\in\varnothing\)
Vậy...
Tìm tham số m để đường thẳng d: y = − 2 ( m + 1 ) x + 1 2 m 2 cắt parabol (P): y = − 2 x 2 tại hai điểm phân biệt
A. m > - 1 2
B. m = 1 2
C. m = 1 4
D. m > −2