Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tranthuylinh

Cho parabol (P): y = x^2 và đường thẳng (d): y = x + m − 1. Tìm m để đường thẳng

(d) cắt parabol (P) tại hai điểm phân biệt ở bên trái trục tung.

Lê Thị Thục Hiền
5 tháng 7 2021 lúc 12:47

Xét pt hoành độ gđ của parabol và d có:

\(x^2=x+m-1\)

\(\Leftrightarrow x^2-x+1-m=0\) (1)

Để (P) và (d) cắt nhau tại hai điểm pb bên trái trục tung

\(\Leftrightarrow\) Pt (1) có hai nghiệm âm pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=1< 0\left(vl\right)\\P=1-m>0\end{matrix}\right.\)\(\Rightarrow\) Không tồn tại m để (d) cắt (P) tại hai điểm pb ở bên trái trục tung

Vậy...

Nguyễn Lê Phước Thịnh
5 tháng 7 2021 lúc 12:51

Phương trình hoành độ giao điểm là:

\(x^2-x-m+1=0\)

a=1; b=-1; c=-m+1

\(\Delta=b^2-4ac\)

\(=\left(-1\right)^2-4\left(-m+1\right)\)

\(=1+4m-4\)

=4m-3

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow m>\dfrac{3}{4}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1x_2=\dfrac{c}{a}=\dfrac{-m+1}{1}=-m+1\end{matrix}\right.\)

Để (d) cắt (P) tại hai điểm phân biệt nằm ở bên trái trục tung thì 

\(\left\{{}\begin{matrix}m>\dfrac{3}{4}\\x_1+x_2< 0\left(loại\right)\\x_1x_2>0\end{matrix}\right.\)

Vậy: \(m\in\varnothing\)


Các câu hỏi tương tự
tranthuylinh
Xem chi tiết
Đoàn Thị Ngọc Châm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
tranthuylinh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Nguyễn Thị Ánh Dương
Xem chi tiết