Phương trình hoành độ giao điểm x 2 = (m – 2)x + 3m ↔ x 2 − (m – 2)x − 3m = 0 (*)
Đường thẳng d cắt (P) tại hai điểm phân biệt nằm hai phía trục tung
↔ Phương trình (*) có hai nghiệm trái dấu
↔ ac < 0 ↔ −3m < 0 ↔ m > 0
Đáp án: D
Phương trình hoành độ giao điểm x 2 = (m – 2)x + 3m ↔ x 2 − (m – 2)x − 3m = 0 (*)
Đường thẳng d cắt (P) tại hai điểm phân biệt nằm hai phía trục tung
↔ Phương trình (*) có hai nghiệm trái dấu
↔ ac < 0 ↔ −3m < 0 ↔ m > 0
Đáp án: D
Tìm tham số m để đường thẳng d: y = mx + m + 1 và parabol (P): y = x 2 cắt nhau tại hai điểm phân biệt nằm bên trái trục tung.
A. m < 0 m ≠ - 2
B. m < - 1 m ≠ - 2
C. m > −1
D. m ≥ −2
Cho parabol (P): y = x^2 và đường thẳng (d): y = x + m − 1. Tìm m để đường thẳng
(d) cắt parabol (P) tại hai điểm phân biệt ở bên trái trục tung.
Cho parabol (P): y = x^2 và đường thẳng (d): y = mx + m + 3. Tìm m để đường thẳng
(d) cắt parabol (P) tại hai điểm phân biệt ở bên phải trục tung.
Tìm m ∈ ℤ để parabol (P): y = x 2 cắt đường thẳng d: y = (m – 1) x + m 2 – 16 tại hai điểm phân biệt nằm bên trái trục tung.
A. m ∈ {−4; −3; −2; −1}
B. m ∈ ∅
C. m ∈ {−3; −2; −1; 0; 1; 2; 3}
D. m ∈ {−3; −2; −1; 0; 2; 3}
Cho parabol (P): y = x 2 và đường thẳng d: y = ( m 2 + 2 ) x – m 2 . Tìm m để d cắt (P) tại hai điểm phân biệt nằm về bên phải trục tung.
A. m > 0
B. m ∈ ℝ
C. m ≠ 0
D. m < 0
cho parabol (p):y=x2 và đường thẳng (d):y=mx+m+3. Tìm m để đường thẳng (d) cắt parabol (p) tại 2 điểm phân biệt ở bên phải trục tung
Cho đường thẳng y=2x + 3 (d) và đường thẳng y= (m+1)x + 5 (d1)
( m là tham số, m khác -1 )
Tìm m để (d) và (d1) cắt nhau tại điểm B nằm bên trái trục tung
Cho parabol (P): y = x 2 và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1