\(\sqrt{25+144}\)
a)22+2x+3=144
b)(\(\sqrt{9}+\sqrt{4}\)).\(\sqrt{x}\)=10
c)(x+\(\dfrac{1}{2}\))2=\(\dfrac{4}{25}\)
a, x=2=35/2
x=log(35/2)
x=log(35)-log(20)
x=log(35)-1
b) \(\left(\sqrt{9}+\sqrt{4}\right).\sqrt{x}=10\)
\(\left(3+2\right).\sqrt{x}=10\)
\(5.\sqrt{x}=10\)
\(\sqrt{x}=2\)
\(x=\sqrt{2}\)
bài 1: rut gọn
a, \(\sqrt{5\left\{1-a\right\}^2}\) với a>1
b,\(\sqrt{\dfrac{9\left[a^2+2a+1\right]}{144}}\)
c,\(\dfrac{2}{x-5}\times\sqrt{\dfrac{x^2\times10x+25}{64}}\)
d \(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) với x≥0 và x≠1
a: \(\sqrt{5\left(1-a\right)^2}\)
\(=\sqrt{5\left(a-1\right)^2}\)
\(=\sqrt{5}\cdot\sqrt{\left(a-1\right)^2}\)
\(=\sqrt{5}\left|a-1\right|\)
\(=\sqrt{5}\left(a-1\right)\)(do a>1 nên a-1>0)
b: \(\sqrt{\dfrac{9\left|a^2+2a+1\right|}{144}}\)
\(=\sqrt{\dfrac{9}{144}\cdot\left|a^2+2a+1\right|}\)
\(=\sqrt{\dfrac{1}{16}\cdot\left|\left(a+1\right)^2\right|}\)
\(=\sqrt{\dfrac{1}{16}}\cdot\sqrt{\left|\left(a+1\right)^2\right|}\)
\(=\dfrac{1}{4}\cdot\left(a+1\right)^2\)
c:
ĐKXĐ: x<>5
Sửa đề:\(\dfrac{2}{x-5}\cdot\sqrt{\dfrac{x^2-10x+25}{64}}\)
\(=\dfrac{2}{x-5}\cdot\sqrt{\dfrac{\left(x-5\right)^2}{64}}\)
\(=\dfrac{2}{x-5}\cdot\dfrac{\sqrt{\left(x-5\right)^2}}{\sqrt{64}}\)
\(=\dfrac{2}{x-5}\cdot\dfrac{\left|x-5\right|}{8}\)
\(=\pm\dfrac{1}{4}\)
d: \(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x}-\sqrt{x}\cdot1}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\sqrt{x}\)
rút gọn các biểu thức: C= \(\frac{2}{3}\)\(\sqrt{144}\)-\(\left(-\frac{3}{4}\right)\): \(\sqrt{\frac{225}{144}}\)
D=\(\frac{4^6.25^5-2^{12}.25^4}{2^{12}.5^8-10^8.64}\)
C = \(\frac{2}{3}\sqrt{144}-\left(-\frac{3}{4}\right)\div\sqrt{\frac{225}{144}}\)
C = \(\frac{2}{3}.12+\frac{3}{4}\div\frac{5}{4}\)
C = \(8+\frac{3}{5}\)
C = \(8\frac{3}{5}\)
D = \(\frac{4^6.25^5-2^{12}.25^4}{2^{12}.5^8-10^8.64}\)
D = \(\frac{\left(2^2\right)^6.\left(5^2\right)^5-2^{12}.\left(5^2\right)^4}{2^{12}.5^8-\left(2.5\right)^8.2^6}\)
D = \(\frac{2^{12}.5^{10}-2^{12}.5^8}{2^{12}.5^8-2^8.5^8.2^6}\)
D = \(\frac{2^{12}.5^8.\left(25-1\right)}{2^{12}.5^8.\left(1-2^2\right)}\)
D = \(\frac{24}{-3}\)
D = \(-8\)
\(C=\frac{2}{3}\sqrt{144}-\left(\frac{-3}{4}\right):\sqrt{\frac{225}{144}}\)
\(=\frac{2}{3}\cdot12+\frac{3}{4}:\frac{5}{4}\)
\(=8+\frac{3}{4}\cdot\frac{4}{5}\)
\(=8+\frac{3}{5}\)
\(=\frac{40}{5}+\frac{3}{4}=\frac{43}{5}\)
\(D=\frac{4^6\cdot25^5-2^{12}\cdot25^4}{2^{12}\cdot5^8-10^8\cdot64}=\frac{\left(2^2\right)^6\cdot\left(5^2\right)^5-2^{12}\cdot\left(5^2\right)^4}{2^{12}\cdot5^8-\left(2\cdot5\right)^8\cdot2^6}\)
\(=\frac{2^{12}\cdot5^{10}-2^{12}\cdot5^8}{2^{12}\cdot5^8-2^{14}\cdot5^8}=\frac{5^8\left(2^{12}\cdot5^2-2^{12}\right)}{5^8\left(2^{12}-2^{14}\right)}\)
\(=\frac{2^{12}\cdot5^2-2^{12}}{2^{12}-2^{14}}=\frac{2^{12}\left(5^2-1\right)}{2^{12}\left(1-2^2\right)}=\frac{24}{-3}=-8\)
Áp dụng quy tắc khai phương một phương, hãy tính :
\(\sqrt{\frac{9}{169}}\) ; \(\sqrt{\frac{25}{144}}\) ; \(\sqrt{1\frac{9}{16}}\) ; \(\sqrt{2\frac{7}{81}}\)
\(\dfrac{3x+25}{144}=\dfrac{2y-169}{25}=\dfrac{z+144}{169}và3x+2y+z=169\)
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{3x+25+2y-169+z+144}{144+25+169}=\frac{(3x+2y+z)+25-169+144}{144+25+169}=\frac{1}{2}$
Suy ra:
$3x+25=144.\frac{1}{2}=72\Rightarrow x=\frac{47}{3}$
$2y-169=25.\frac{1}{2}\Rightarrow y=\frac{363}{4}$
$z+144=169.\frac{1}{2}\Rightarrow z=\frac{-119}{2}$
P/s: Lần sau bạn lưu ý ghi đầy đủ yêu cầu đề bài.
Áp dụng quy tắc khai phương một thương, hãy tính :
a) \(\sqrt{\dfrac{9}{169}}\)
b) \(\sqrt{\dfrac{25}{144}}\)
c) \(\sqrt{1\dfrac{9}{16}}\)
d) \(\sqrt{2\dfrac{7}{81}}\)
Áp dụng quy tắc khai phương một thương, hãy tính :
9169" id="MathJax-Element-1-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; font-size:18px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">9169−−−−√ = \(\sqrt{\dfrac{3^2}{13^2}}\) = \(\left|\dfrac{3}{13}\right|\) = \(\dfrac{3}{13}\)
25144" id="MathJax-Element-2-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; font-size:18px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">25144−−−−√ = \(\sqrt{\dfrac{5^2}{12^2}}\) = \(\left|\dfrac{5}{12}\right|\) = \(\dfrac{5}{12}\)
916" id="MathJax-Element-3-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline; float:none; font-size:18px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">1916−−−−√ = \(\sqrt{\dfrac{25}{16}}\) = \(\sqrt{\dfrac{5^2}{4^2}}\) = \(\left|\dfrac{5}{4}\right|\) = \(\dfrac{5}{4}\)
781" id="MathJax-Element-4-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:18px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:normal; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">2781−−−−√ = \(\sqrt{\dfrac{169}{81}}\) = \(\sqrt{\dfrac{13^2}{9^2}}\) = \(\left|\dfrac{13}{9}\right|\) = \(\dfrac{13}{9}\)
bài 1 So sánh
a, \(\sqrt{50}+\sqrt{39}+3\) và 16
b, \(\sqrt{3}+\sqrt{8}+2\) và 7
c, \(2\sqrt{26}+3\sqrt{64}-5\) và 28
bài 2 Tính nhanh
a, \(\sqrt{4}+\sqrt{25}+\sqrt{64}+...+\sqrt{2500}\)
b, \(\sqrt{1}+\sqrt{25}+\sqrt{81}+...+\sqrt{9409}\)
c, \(\sqrt{\frac{1}{4}}+\sqrt{\frac{1}{36}}+\sqrt{\frac{1}{144}}+...+\sqrt{\frac{1}{9900^2}}\)
Bài 2:
a) Ta có: \(\sqrt{4}+\sqrt{25}+\sqrt{64}+...+\sqrt{2500}\)
\(=2+5+8+...+50\)
Số hạng tử là: \(\frac{50-2}{3}+1=\frac{48}{3}+1=16+1=17\)(số)
Tổng của dãy số là: \(\left(50+2\right)\cdot\frac{17}{2}=\frac{52\cdot17}{2}=26\cdot17=442\)
b) Ta có: \(\sqrt{1}+\sqrt{25}+\sqrt{81}+...+\sqrt{9409}\)
\(=1+5+9+...+97\)
Số hạng tử là:
\(\frac{97-1}{4}+1=\frac{96}{4}+1=24+1=25\)(số)
Tổng của dãy số là: \(\left(97+1\right)\cdot\frac{25}{2}=\frac{98\cdot25}{2}=49\cdot25=1225\)
((4/9)^2*(-9/16)^1*(-1)^19)/((4/25)^2*(-25/144)^2*(-49/144)^2)
D=(4/49)^2*(-49/16)*(-1)^10/(4/25)^2*(-25/144)^2:(-49/144)^2