Cho \(0< \alpha< 90\) độ. Hãy viết tính chất của góc \(\alpha\)
Cho \(0< \alpha< 90\) độ. Không dùng máy tính hãy tính :
\(\sin\alpha+\cos\alpha,\) biết \(\tan\alpha+\cot\alpha=8\)
Cho \(0< \alpha< 90\) độ. Không dùng máy tính hãy tính :
\(a,\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\) biết \(\tan\alpha=\frac{1}{3}\)
\(b,\tan\alpha\)biết \(\sin\alpha+\cos\alpha=\frac{7}{5}\)
a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(\frac{1}{3}\)= \(\frac{\sin\alpha}{\cos\alpha}\)
\(\cos\alpha\)= 3 \(\sin\alpha\)
ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)= \(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)= \(\frac{4\sin\alpha}{2\sin\alpha}\)= \(2\)
#mã mã#
Tính các giá trị lượng giác của góc α, nếu:
a) \(\sin \alpha = \frac{5}{{13}}\) và \(\frac{\pi }{2} < \alpha < \pi \)
b) \(\cos \alpha = \frac{2}{5}\) và \(0 < \alpha < 90^\circ \)
c) \(\tan \alpha = \sqrt 3 \) và \(\pi < \alpha < \frac{{3\pi }}{2}\)
d) \(\cot \alpha = \frac{1}{2}\) và \(270^\circ < \alpha < 360^\circ \)
1. Với \(\alpha\) là góc nhọn và \(\tan\alpha=\dfrac{1}{2}\). Không dùng máy tính hãy tính \(\cos\left(90^o-\alpha\right)\)
2.
a. \(\sin\alpha=\dfrac{4}{5}\). Tính \(\tan\alpha\)
b. so sánh \(\tan28^o\) và \(\sin28^o\)
Câu 1:
Ta có: \(\cos\left(90^0-\alpha\right)=\sin\alpha\)
\(\Leftrightarrow\sin\alpha=1:\sqrt{\dfrac{1^2+2^2}{1}}=1:\sqrt{5}=\dfrac{\sqrt{5}}{5}\)
Câu 2:
a) \(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)
\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
Cho \(0< \alpha< 90\) độ. Không dùng máy tính hãy tính :
\(a,4\cos^2\alpha-6\sin^2\alpha,\) biết \(\sin^2\alpha=\frac{1}{5}\)
\(b,5\cos^2\alpha+2\sin^2\alpha,\)biết \(\sin\alpha=\frac{2}{3}\)
a, ta có \(\cos^2\alpha\)+ \(\sin^2\alpha\)= 1
1/5 + \(\cos^2\alpha\)= 1
\(\cos^2\alpha\)= 4/5
\(4\cos^2\alpha\)+6 \(\sin^2\alpha\)= 4 . 4/5 + 6.1/5=22/5
b, \(\sin\alpha\)= 2/3
\(\sin^2\alpha\)= 4/9
\(\cos^2\alpha=\frac{5}{9}\)
\(5\cos^2\alpha+2\sin^2=\frac{5.5}{9}+\frac{2.4}{9}=\frac{33}{9}\)
#mã mã#
Cho \(\cos\alpha=\dfrac{3}{4}\). Hãy tìm \(\sin\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Cho \(\sin\alpha=\dfrac{1}{2}\). Hãy tìm \(\cos\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Cho góc \(\alpha\) với 90\(^0\) <\(\alpha< 180^0\) . Khẳng định nào sau đây là đúng
00< góc alpha < 900 . CMR : P=sin6alpha + cos6alpha + 3sin2alpha + cos2alpha không phụ vào giá trị góc alpha
để mình làm cho
\(P=\sin^6_a+\cos^6_a+3\sin_a^2+\cos^2_a=\left(\sin^2_a+\cos^2_a\right)\left(\sin^4_a-\sin^2_a\cos^2_a+\cos^4_a\right)\) \(+3.\sin^2_a.\cos^2_a\)
\(=\sin^4_a+2\sin^2_a.\cos^2_a+\cos^4_a=\left(\sin^2_a+\cos^2_a\right)^2=1\)
đề đoạn cuối phải là nhân chứ không phải +
Cho cos \(\alpha\) =3/4 với 0< \(\alpha\)<90 . Tính A = \(\dfrac{\tan\alpha+3\cot\alpha}{\tan+\cot}\)
\(0< a< 90^0\)
=>\(sina>0\)
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{9}{16}=\dfrac{7}{16}\)
=>\(sina=\dfrac{\sqrt{7}}{4}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cota=\dfrac{1}{tana}=\dfrac{3}{\sqrt{7}}\)
\(A=\dfrac{tana+3cota}{tana+cota}=\dfrac{\dfrac{\sqrt{7}}{3}+\dfrac{9}{\sqrt{7}}}{\dfrac{3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)
\(=\dfrac{34}{3\sqrt{7}}:\dfrac{16}{3\sqrt{7}}=\dfrac{17}{8}\)