Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenminhanh
Xem chi tiết
Vũ Đỗ Việt Cường
27 tháng 11 2021 lúc 9:30

lên google

Khách vãng lai đã xóa
Giang
Xem chi tiết
nguyễn thị huy hoàng
Xem chi tiết
₮ØⱤ₴₮
13 tháng 10 2019 lúc 15:28

bạn ghi rõ đề ra được không

Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 11:00

a: \(=\left(\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{2x^2-x^3}{x^2-3x}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{-4x^2-8x}{x+2}\cdot\dfrac{-x}{x-3}\)

\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{-x}{x-3}=\dfrac{4x^2}{x-3}\)

b: \(=\dfrac{2x-1}{2x+1}:\left(2x-1+\dfrac{2-4x}{2x+1}\right)\)

\(=\dfrac{2x-1}{2x+1}:\dfrac{4x^2-1+2-4x}{2x+1}\)

\(=\dfrac{2x-1}{4x^2-4x+1}=\dfrac{1}{2x-1}\)

c: \(=\left(\dfrac{1}{1-x}-1\right):\left(x+1-\dfrac{2x-1}{x-1}\right)\)

\(=\dfrac{1-1+x}{1-x}:\dfrac{x^2-1-2x+1}{x-1}\)

\(=\dfrac{-x}{x-1}\cdot\dfrac{x-1}{x\left(x-2\right)}=\dfrac{-1}{x-2}\)

to tien cuong
Xem chi tiết
Huy Hoàng
8 tháng 7 2018 lúc 13:08

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

Phúc Duong
Xem chi tiết
Nguyễn Thị Huy Hoàng 7
Xem chi tiết
Giang Phương Thảo
Xem chi tiết
Trần Khánh Linh
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
17 tháng 5 2020 lúc 9:28

a, \(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\frac{4+8x-20}{24}=\frac{18-6x}{24}\)

\(-16-8x=18-6x\)

\(-16-8x-18+6x=0\)

\(-34-2x=0\)

\(2x=-34\Leftrightarrow x=-17\)

Khách vãng lai đã xóa
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
17 tháng 5 2020 lúc 9:32

b, \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)ĐKXĐ : x \(\ne\)-1 ; 0 

\(\frac{x^2+3x}{x^2+x}+\frac{x^2-x-2}{x^2+x}=\frac{2x^2+2x}{x^2+x}\)

\(x^2+3x+x^2-x-2=2x^2+2x\)

\(2x^2+2x-2=2x^2+2x\)

\(2x^2+2x-2x^2-2x-2=0\)

\(-2\ne0\) Nên phuwong trình vô nghiệm. (xem lại hộ)

Khách vãng lai đã xóa
Quang Khánh
Xem chi tiết
Khánh Ko Ổn
Xem chi tiết
Khánh Ko Ổn
17 tháng 2 2021 lúc 20:46

sửa lại chút: a) (2x+1)^2-2x-1=2              b) (x^2-3x)^2+5(x^2-3x)+6=0                  c) (x^2-x-1)(x^2-x)-2=0            d) (5-2x)^2+4x-10=8                   e) (x^2+2x+3)(x^2+2x+1)=3              f) x(x-1)(x^2-x+1)-6=0

Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 22:52

a) Ta có: \(\left(2x+1\right)^2-2x-1=2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)^2-2\left(2x+1\right)+\left(2x+1\right)-2=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+1-2\right)+\left(2x+1-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{1}{2};-1\right\}\)