cho 2 số x,y thỏa mãn: 2\(\left(x^2+y^2\right)=2025\). Giá trị lớn nhất của x+y là
Cho 2 số x, y thỏa mãn 2(x2+y2) =2025. giá trị lớn nhất của x+ y là bao nhiêu
Cho 2 cặp số x,y thoả mãn: \(2\left(x^2+y^2\right)=2025\)giá trị lớn nhất của x-y
\(A=x-y\)
+x<y => A<0
+ x>/ y =>\(A^2=\left(x-y\right)^2=\left(1.x+1.\left(-y\right)\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=\frac{2.2025}{2}\)
\(A\le45\)
=> Max \(A=45\) => x = -y => 4 x2 = 2025 => x =-y = 45/2
Vậy x =45/2 ; y =-45/2
Cho các số x, y thỏa mãn đẳng thức \(5x^2+5y^2+8xy-2x+2y+2=0\). Tính giá trị của biểu thức
\(M=\left(x+y\right)^{2023}+\left(x-2\right)^{2024}+\left(y+1\right)^{2025}\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
cho x, y là các số thục thỏa mãn \(x^2\left(x^2+2y^2-3\right)+\left(y-2\right)^2=1\) tìm giá trị lớn nhất và giá trị nhỏ nhất của \(C=x^2+y^2\)
Cho x,y là các số thực thỏa mãn:\(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức :A=x+y+1.
A = x +y +1 => A - 1 = x +y.
Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0
=> (A +1)(A +4) <= 0 => - 1 <= A <= -4
A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1
A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4
Vậy minA = -1 khi x = -1, y = 0
maxA = -4 khi x = -4, y = 0
Cho hai số thực dương x, y thỏa mãn \(2^x+2^y=4\). Tìm giá trị lớn nhất Pmax của biểu thức \(P=\left(2x^2+y\right)\left(2y^2+x\right)+9xy\)
\(4=2^x+2^y\ge2\sqrt{2^{x+y}}\Rightarrow2^{x+y}\le4\Rightarrow x+y\le2\)
\(\Rightarrow xy\le1\)
\(P=4x^2y^2+2x^3+2y^3+10xy\)
\(P=4x^2y^2+10xy+2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
\(P\le4x^2y^2+10xy+4\left(4-3xy\right)=4x^2y^2-2xy+16\)
Đặt \(xy=t\Rightarrow0< t\le1\)
Xét hàm \(f\left(t\right)=4t^2-2t+16\) trên \((0;1]\)
\(\Rightarrow...\)
cho x, y là hai số thực thỏa mãn (x - 4)2 + (y - 3)2 = 5 và biểu thức
Q=\(\sqrt{\left(x+1\right)^2+\left(y-3\right)^2}+\sqrt{\left(x-1\right)^2+\left(y+1\right)^2}\) đạt giá trị lớn nhất. Tìm P = x + y
Đặt \(\left\{{}\begin{matrix}x-4=a\\y-3=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=5\)
\(Q=\sqrt{\left(a+5\right)^2+b^2}+\sqrt{\left(a+3\right)^2+\left(b+4\right)^2}\)
\(\Rightarrow Q\le\sqrt{2\left[\left(a+5\right)^2+b^2+\left(a+3\right)^2+\left(b+4\right)^2\right]}\) (Bunhiacopxki)
\(\Rightarrow Q\le\sqrt{4\left(a^2+8a+b^2+4b+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(a^2+2.4a+b^2+2.2b+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(a^2+2\left(a^2+4\right)+b^2+2\left(b^2+1\right)+25\right)}\)
\(\Rightarrow Q\le\sqrt{4\left(3a^2+3b^2+35\right)}\le\sqrt{4\left(3.5+35\right)}=10\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=4\end{matrix}\right.\)
Cho 2 số x, y thỏa mãn 2(x^2+y^2) =2025. giá trị lớn nhất của x+ y là bao nhiêu.
cho 2 số thực x,y thỏa mãn điều kiên \(x+y+25=8\left(\sqrt{x-1}+\sqrt{y-5}\right)\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: \(P=\sqrt{\left(x-1\right)\left(y-5\right)}\)