Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Yến
Xem chi tiết

Câu a bạn có chép sai ko vậy?

Giải

b)Xét tam giác BAH và CAH có:

AB=AC(gt)

góc B =góc C(gt)

AH chung

\(\Rightarrow\)tam giác BAH =CAH (c.g.c)

\(\Rightarrow\)góc BAH=CAH (2 góc t/ư)

Mặt khác AH nằm giữa AB và AC ,chia góc A thành 2 góc bằng nhau 

Mà H là trung điểm BC

\(\Rightarrow\)AH là tia phân giác góc A và vuông góc BC

 

Nguyễn Lê Phước Thịnh
8 tháng 3 2021 lúc 19:14

a) Sửa đề: ΔAHB=ΔAHC

Xét ΔAHB và ΔAHC có 

AH chung

AB=AC(ΔABC cân tại A)

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-g-c)

Nguyễn Hồng Anh
Xem chi tiết
hoang hong nhung
Xem chi tiết
Bạch Khả Ái
2 tháng 7 2019 lúc 22:18

A B C M N H

a) Xét tam giác ABH vuông tại H và tam giác ACH vuông tại H có:

                                     AB=AC(tam giác ABC cân tại A)

                                     AH: chung

Do đó:tam giác ABH= tam giác ACH(ch-cgv)

b)Xét tam giác BMH vuông tại M và tam giác CNH vuông tại N có:

                                     BH=CH(tam giác ABH=tam giác ACH)

                                      góc B=góc C(tam giác ABC cân tại A)

Do đó:tam giác BMH=tam giác CNH(ch-gn)

#Ở câu b bạn có thể chọn trường hợp ch-cgv cũng đc hjhj:)))<3#

c)bn cho thiếu dữ kiên nên mk k làm đc nhé tks

P/S: chúc bạn học tốt..........boaiiii>.< moa<3

                      

Trí Phan
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 22:11

a) Xét ΔAHM vuông tại M và ΔAHN vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)(AH là tia phân giác của \(\widehat{MAN}\))

Do đó: ΔAHM=ΔAHN(cạnh huyền-góc nhọn)

 

6.8_48 Võ Quốc Vương
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
13 tháng 3 2023 lúc 9:05

A B C H M N

a, Xét tam giác \(\Delta ABH\) và \(\Delta ACH\) có :

\(HB=HC\left(gt\right)\)

\(\widehat{B}=\widehat{C}\left(gt\right)\)

\(AB=AC\left(gt\right)\)

= > \(\Delta ABH=\Delta ACH\left(c-g-c\right)\)

b, M là trung điểm của cạnh AC = > MA = 1/2 AC ( 1 )

 N là trung điểm của cạnh AB = > NA = 1/2 AB  ( 2 )

Từ ( 1 ) , ( 2 ) = > MA = NA   ( Do AB = AC )

Mà tam giác ABH = tam giác ACH ( câu a, )

= > \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng )

Xét \(\Delta ANH\) và \(\Delta AMH\) có :

\(AN=AM\left(cmt\right)\)

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

AH chung 

= > \(\Delta ANH=\Delta AMH\left(c-g-c\right)\)

= > HN = HM ( 2 cạnh tương ứng )

 

 

 

when the imposter is sus
13 tháng 3 2023 lúc 9:05

a) Xét hai tam giác ABH và ACH ta có:

- AB = AC (vì ABC là tam giác cân)

- HB = HC (vì H là trung điểm của BC)

\(\widehat{B}=\widehat{C}\) (vì ABC là tam giác cân)

Vậy \(\Delta ABH=\Delta ACH\) (c.g.c)

b) Xét hai tam giác NBH và MCH ta có:

- NB = MC (vì AB = AC, M là trung điểm của AC và N là trung điểm của AB)

- HB = HC (đã chứng minh trên)

\(\widehat{B}=\widehat{C}\) (đã chứng minh trên)

Suy ra \(\Delta NBH=\Delta MCH\) (c.g.c)

Khi đó HN = HM (vì hai cạnh tương ứng)

Tue Anh Do
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
9 tháng 12 2023 lúc 15:44

`#3107.101107`

`a,`

Xét $\triangle ABH$ và $\triangle ACH$:

`AB = AC` $(\triangle ABC$cân tại A`)`

\(\widehat{B}=\widehat{C}\) $(\triangle ABC$cân tại A`)`

`HB = HC ( H` là trung điểm của BC`)`

$=> \triangle ABH = \triangle ACH (c - g - c)$

Vì $\triangle ABH = \triangle ACH$

`=>`\(\widehat{AHB}=\widehat{AHC}\left(\text{2 góc tương ứng}\right)\)

Mà `2` góc này nằm ở vị trí kề bù

`=>` \(\widehat{AHB}+\widehat{AHC}=180^0\)

`=>` \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\) `=> AH \bot BC`

`b,`

Vì $\triangle ABH = \triangle ACH (a)$

`=>`\(\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\)

Xét $\triangle AHM$ và $\triangle AHN$:

AH chung

\(\widehat{MAH}=\widehat{NAH}\left(CMT\right)\)

\(\widehat{AMH}=\widehat{ANH}\left(=90^0\right)\)

$=> \triangle AHM = \triangle AHN (ch - gn)$

`c,`

Xét $\triangle HMB$ và $\triangle HNC$:

\(\widehat{HMB}=\widehat{HNC}\left(=90^0\right)\)

`HB = HC` `(`gt`)`

\(\widehat{HBM}=\widehat{HCN}\) $(\triangle ABC$ cân tại A`)`

$=> \triangle HMB = \triangle HNC (ch - gn)$

`=>`\(\widehat{BHM}=\widehat{CHN}\left(2\text{ góc tương ứng}\right)\) `(1)`

Vì \(\left\{{}\begin{matrix}\widehat{MHB}+\widehat{KHB}=\widehat{MHK}\\\widehat{NHC}+\widehat{IHC}=\widehat{NHI}\end{matrix}\right.\)

Mà \(\widehat{MHK}=\widehat{NHI}\left(\text{đối đỉnh}\right)\) `(2)`

Từ `(1)` và `(2)` `=>` \(\widehat{KHB}=\widehat{IHC}\)

Xét $\triangle KHB$ và $\triangle IHC$:

\(\widehat{KBH}=\widehat{ICH}\left(\widehat{ABC}=\widehat{ACB}\right)\)

`HB = HC`

\(\widehat{KHB}=\widehat{IHC}\)

$=> \triangle KHB = \triangle IHC (g - c - g)$

`=> BK = CI` `(2` cạnh tương ứng`)`

Ta có:

`AK = AB + BK`

`AI = AC + CI`

Mà `AB = AC; BK = CI`

$=> AK = AI => \triangle AIK$ cân tại A.

loading...

nguyett anhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 2:09

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>HB=HC và góc BAH=góc CAH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN

=>ΔAMN cân tại A

Tiffany Ho
Xem chi tiết
Nguyễn Việt Hoàng
9 tháng 2 2019 lúc 12:40

A B C H M N 1 2 I K

a) Xét \(\Delta AHB\)\(\Delta AHC\)có :

\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)

\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)

Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )

\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AH\perp BC\)

b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :

\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )

\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )

Tiffany Ho
9 tháng 2 2019 lúc 22:16

câu c đâu r bn (mk đang cần câu c ak)

Lê Cẩm Nhung
Xem chi tiết
Têrêsa Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 2 2021 lúc 21:16

a) Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(gt)

Do đó: ΔABN=ΔACM(c-g-c)

Suy ra: BN=CM(hai cạnh tương ứng)

b) Xét ΔAHB và ΔAHC có 

AB=AC(ΔABC cân tại A)

AH chung

HB=HC(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)

hay AH⊥BC(đpcm)

c) Ta có: AH⊥BC(cmt)

mà H là trung điểm của BC(gt)

nên AH là đường trung trực của BC

⇔EH là đường trung trực của BC

⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)

Xét ΔEBC có EB=EC(cmt)

nên ΔEBC cân tại E(Định nghĩa tam giác cân)