Cho \(a^2-3ab+2b^2+a-b=a^2-2ab+b^2-5a+7b=0\).
C/m \(ab-12a+15b=0\)
Cho a,b TM a^2-3ab+2b^2+a-b=0 và a^2-2ab+b^2-5a+7b=0 .Chứng minh ab-12a+15b
Cho a, b thỏa mãn \(a^2-3ab+2b^2+a-b=a^2-2ab+b^2-5a+7b=0\)
Chúng tỏ rằng: \(ab-12a+15b=0\)
Cho a3+4a2b=2b3-5ab2 và a khác b khác 0.
Giá trị \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab^2}=?\)
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
c/m đẳng thức 2ab/a-b-a^3+b^3/b^2-a^2=a^3-a^2b-ab^2-2b^2/a^2-3ab+2b^2
??????????????????????????????????
tìm a,b thuộc Z
a. ab=2a+2b+5
b.ab-7b+5a=0 và b>hoặc=3
c.2ab+3b-4a=1
d.\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\)
Tìm a,b,c biết
a) \(a^2+25b^2+17+10b-8a=0\)
b) \(a^2+b^2-ab-2a-2b+4=0\)
c) \(a^2+2b^2+2ab-2a+2=0\)
d) \(5a^2+3b^2+c^2-4a+6ab+4c+6=0\)
a) \(a^2+25b^2+17+10b-8a=0\)
\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)
Vì \(\left(a-4\right)^2\ge0\) với mọi a
\(\left(5b+1\right)^2\ge0\) với mọi b
\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b
Mà \(\left(a-4\right)^2+\left(5b+1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)
TÌM A,B BIẾT:
a, A+5/ 3-B= 3/4 và A+B=-4
b,AB= 2A +2B+5
c,2AB +3B- 4A=1
d, 3/A -1/2=B/2
e,AB -7B+ 5A=0 và B>hoặc bằng 3
f, 1/A +1/B =1/2
GIÚP MÌNH NHÉ
bà 1 rút gọn biểu thức :\(\sqrt{9ab}\) + 7\(\sqrt{\dfrac{a}{b}}\) - 5\(\sqrt{\dfrac{b}{a}}\) - 3ab \(\sqrt{\dfrac{1}{ab}}\)
bài 2 :cho a>0,b>0 chứng minh : \(\dfrac{a^2b}{a-b}\).\(\sqrt{\dfrac{8\left(a^2-2ab+b^2\right)}{75a^4b}}\) = \(\dfrac{2}{15}\) .\(\sqrt{6b}\)
2:
\(VT=\dfrac{a^2b}{a-b}\cdot\dfrac{2\sqrt{2}\left(a-b\right)}{5\sqrt{3}\cdot a^2\sqrt{b}}=\dfrac{2}{15}\cdot\sqrt{6b}=VP\)
1: \(=9\sqrt{ab}+\dfrac{7\sqrt{ab}}{b}-\dfrac{5\sqrt{ab}}{a}-3\sqrt{ab}=\)6căn ab+căn ab(7/b-5/a)
=căn ab(6+7/b-5/a)
cho a,b thỏa mãn 5a^2+2b^2=11ab và a>2b>0. tính giá trị biểu thức A=4a^2-5b^2/a^2+2ab
Lời giải:
$5a^2+2b^2=11ab$
$\Leftrightarrow 5a^2+2b^2-11ab=0$
$\Leftrightarrow (5a^2-10ab)-(ab-2b^2)=0$
$\Leftrightarrow 5a(a-2b)-b(a-2b)=0$
$\Leftrightarrow (a-2b)(5a-b)=0$
Do $a>2b>0$ nên $a-2b>0$. Do dó $5a-b=0$
$\Leftrightarrow b=5a$. Khi đó:
$A=\frac{4a^2-5b^2}{a^2+2ab}=\frac{4a^2-5(5a)^2}{a^2+2a.5a}=\frac{-121a^2}{11a^2}=-11$