Cho n thuộc N. Chứng minh rằng n - 1 cũng thuộc N.
a) Chứng minh rằng với n thuộc N* , (n+1)(3n+2) là một số chẵn
b) Chứng minh rằng x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
cho (3^n) + 1 là B(10)(n thuộc N). Chứng minh rằng (3^n) + 4 +1 cũng là B(10)
cho (3^n)+1 là bội của 10 (n thuộc N*)Chứng minh rằng (3^n+4)+1 cũng là bội của 10
nếu 3n+1 chia hết cho 10 thì phải cộng thêm 1 số chia hết cho 10 mà 4 ko chia hết cho 10
hay giả sử 3^n tận cùng là 5 thì mới +5 chia hết cho 10
mà 3n tận cùng là 3,9,7,1
nên ko thể có 3^n+4+1 chia hết cho 10
cho (3^n) + 1 là B(10)(n thuộc N). Chứng minh rằng (3^n) + 4 +1 cũng là B(10).(các bạn nhớ giải rõ ra nhé !!!)
nếu 3^n+1 chia hết cho 10 thì phải cộng thêm 1 số chia hết cho 10,mà 4 không chia hết cho 10.
Hay giả sử 3^n tận cùng là 5 thì mới +5 chia hết cho 10.
Mà 3^n tận cùng là 3;9;7;1. thôi.
Học tốt^^
chứng minh rằng : với mọi n thuộc N thì 16^n - 15^n-1 chia hết cho 75
chứng minh rằng : với mọi n thuộc N* thì 5^n + 2.3^n-1 chia hết cho 8
a). Cho đường trong tâm O, A là điểm bất kì thuộc đường tròn. Vẽ A' đối xứng với A qua O. Chứng minh rằng điểm A' cũng thuộc đường tròn tâm O.
b). Cho đường tròn (O), AB là một đường kính bất kì và C là điểm thuộc đường tròn. Vẽ C' đối xứng với C qua AB. Chứng minh rằng điểm C' cũng thuộc đường tròn (O).
Cho n thuộc N , chứng minh rằng 5n - 1 chia hết cho 4
Cho n thuộc N , chứng minh rằng n2 + n + 1 không chia hết cho 4 và không chia hết cho 5
1.Tìm số nguyên tố p sao cho p+3 cũng là số nguyên tố
2. Cho n thuộc N. Chứng minh rằng hai số n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
1. Tìm xy thuộc N sao cho 12xy chia hết cho 71.
2. Chứng minh rằng 11...1 ( n số 1) - n chia hết cho 3 với n thuộc N*.
3. Chứng minh rằng 2n+11...1 ( n số 1) chia hết cho 3.
Các bạn giúp mình với. Mình bị bí rồi!