(x-y)^5÷(y-x)^4
chứng minh các đẳng thức sau:
a)(x+y)(x^3-x^2y+xy^2+y^3)=x^4+y^4
b)(x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
c)(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
d)(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)=x^5-y^5
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
Bài 62 làm phép chia
a,[5.(x-y)^4-3.(x-y)^3+4.(x-y)^2]:(y-x)^2
b,[(x+y)^5-2.(x+y)^4+3.(x+y)^3]:[-5(x + y)^3]=0
Caâu 29. Cho \(\dfrac{x}{3}\) =\(\dfrac{y}{4}\) và x.y12 Kết quả tìm được của x và y là:
A. x = 3; y = 4 và x = -3; y = - 4
B. x = 2; y = 4 và x = -2; y = - 4
C. x = 1; y = 4 và x = -1; y = - 4
D. x = 4; y = 5 và x = -4; y = - 5
Bài 4: Chứng minh biểu thức không phụ thuộc vào biến
a, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)-(y\(^2\)+1)(y\(^2\)-1)
3, x(y-z)+y(z-x)+z(x-y)
4, x(y+z-yz)-y(z+x-xz)+z(y-x)
5, x(2x+1)-x\(^2\)(x+2)+x\(^3\)-x+3
6, x(3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
Bạn cần phần nào thì mình sẽ giúp đỡ . Chứ bạn nhắn nhiều bài mình không giải được á . Chứ còn dạng bài như này thì hầu hết bạn đều phải nhân bung ra rồi rút gọn đi á .
muốn rối cái não bạn nhắn một lượt mình đọc không hiểu bạn nhắn từng câu thôi
1. x/y-2=3/2 và x-y=4
2. x-4/y+2=1/2 và x+y=5
3. 3/x-2=2/y+2 và x+y=5
4.3/x-2=2/y+2 và x+y=1
5.x+2/y+3=5/6 và x-y=1
6. x-1/y+4=3/4 và 2x=3y
7. x-1/y+4=3/4 và 2x=3y+2
vd câu 1:
ta có x-y=4 =>x=4+y
ta có pt:
4+y/y-2=3/2
=>8+2y=3y-6
=>-y=-14
=>y=14
=>x=4+y=4+14=18
các bài khác cũng tương tự thôi bạn
dấu chéo có nghĩa là phân số hí
Bài 3:Chứng minh biểu thức không phụ thuộc vào biến
1, (y-5)(y+8)-(y+4)(y-1)
2, y\(^4\)- (y\(^2\)+1)(y\(^2\)-1)
3, x(y-z) + y(z-x) +z(x-y)
4, x(y+z-yz) -y(z+x-xz)+z(y-x)
5, x(2x+1) - x\(^2\)(x+2)+x\(^3\)-x+3
6, x (3x-x+5)-(2x\(^3\)+3x-16)-x(x\(^2\)-x+2)
`@` `\text {Ans}`
`\downarrow`
`1,`
\((y-5)(y+8)-(y+4)(y-1)\)
`= y(y+8) - 5(y+8) - [y(y-1) + 4(y-1)]`
`= y^2+8y - 5y - 40 - (y^2-y + 4y - 4)`
`= y^2+8y-5y-40 - y^2+y-4y+4`
`= (y^2-y^2)+(8y-5y+y-4y) +(-40+4)`
`= -36`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`2,`
\(y^4-(y^2+1)(y^2-1)\)
`= y^4 - [y^2(y^2-1)+y^2-1]`
`= y^4- (y^4-y^2 + y^2-1)`
`= y^4-(y^4-1)`
`= y^4-y^4+1`
`= 1`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`3,`
\(x(y-z) + y(z-x) +z(x-y)\)
`= xy-xz + yz - yx + zx-zy`
`= (xy-yx) + (-xz+zx) + (yz-zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`4,`
\(x(y+z-yz) -y(z+x-xz)+z(y-x)\)
`= xy+xz-xyz - yz - yx + yxz + zy - zx`
`= (xy-yx)+(xz-zx)+(-xyz+yxz)+(-yz+zy)`
`= 0`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`5,`
\(x(2x+1)-x^2(x+2)+x^3-x+3\)
`= 2x^2+x - x^3 - 2x^2 + x^3 - x + 3`
`= (2x^2-2x^2)+(-x^3+x^3)+(x-x)+3`
`= 3`
Vậy, bt trên không phụ thuộc vào gtr của biến.
`6,`
\(x(3x-x+5)-(2x^3+3x-16)-x(x^2-x+2)\)
`= 3x^2 - x^2 + 5x - 2x^3 - 3x + 16 - x^3 + x^2 - 2x`
`= -3x^3 + 3x^2 + 16`
Bạn xem lại đề bài.
`\text {#KaizuulvG}`
tìm x,y,z biết:
câu 3:x/y=5/9 và x-y=-40
câu b: x/2=y/3 và 5.x-2.y=28
câu c: x/5=y/7=z/10 và x+y-z=20
câu d: x/3=y/4=z/5 và 3.x-2.y+2.z=121
câu e: x/4=y/2 và y/3=z/5 và x+y-z=20
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
rút gọn B
B=-4x^5.y+x^4.y^3-3x^2.y^3.z^2+4.x^5.y-2.y^4-x^4.y-x^4.y+3.y^4+4.y^2.x^2.z^2-y^4+1/2
`Answer:`
\( B=-4x^5.y+x^4.y^3-3x^2.y^3.z^2+4.x^5.y-2.y^4-x^4.y-x^4.y+3.y^4+4.y^2.x^2.z^2-y^4+\frac{1}{2}\)
\(=-4x^5y-3x^2y^3z^2+4x^y-2y^4+3y^4+4x^2y^3z^2-y^4+\frac{1}{2}\)
\(=-4x^5y+x^2y^3z^2+4x^y-2y^4+3y^4-y^4+\frac{1}{2}\)
\(=-4x^5y+x^2y^3z^2+4x^y+\frac{1}{2}\)
rút gọn B
B=-4x^5.y+x^4.y^3-3x^2.y^3.z^2+4.x^5.y-2.y^4-x^4.y-x^4.y+3.y^4+4.y^2.x^2.z^2-y^4+1/2
B=-4x^5y+x^4y^3-3x^2y^3z^2+4x^5y-2y^4-x^4y-x^4y+3y^4+4y^2x^2z^2-y^4+\(\frac{1}{2}\)
=(-4x^5y+4x^5y)+x^4y^3-3x^2y^3z^2+(2y^4+3y^4-y^4)+(-x^4y-x^4y)+4y^2x^2z^2+\(\frac{1}{2}\)
=x^4y^3-3y^3z^2-2x^4y+4y^2x^2z^2+\(\frac{1}{2}\)
rút gọn B
B=-4x^5.y+x^4.y^3-3x^2.y^3.z^2+4.x^5.y-2.y^4-x^4.y-x^4.y+3.y^4+4.y^2.x^2.z^2-y^4+1/2