(1+\(\frac{1}{\tan^225}\))\(\sin^225-\tan55\tan35\)
tính giá trị biểu thức
\(\left(1+\frac{1}{\tan^225^o}\right)\sin^225^o+\tan55^o.\tan35^o\)
Tính giá trị của các biểu thức:
a) \(\dfrac{-3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\left(1+\sqrt{5}\right)^2}\)
b) \(\left(1+\dfrac{1}{tan^225^0}\right)sin^225^0-tan55^0.tan35^0\)
a) Ta có: \(-\dfrac{3}{2}\sqrt{9-4\sqrt{5}}+\sqrt{\left(-4\right)^2\cdot\left(1+\sqrt{5}\right)^2}\)
\(=\dfrac{-3}{2}\left(\sqrt{5}-2\right)+4\cdot\left(\sqrt{5}+1\right)\)
\(=\dfrac{-3}{2}\sqrt{5}+3+4\sqrt{5}+4\)
\(=\dfrac{5}{2}\sqrt{5}+7\)
b) Ta có: \(\left(1+\dfrac{1}{\tan^225^0}\right)\cdot\sin^225^0-\tan55^0\cdot\tan35^0\)
\(=\dfrac{\tan^225^0+1}{\tan^225^0}\cdot\sin25^0-1\)
\(=\left(\dfrac{\sin^225^0}{\cos^225^0}+1\right)\cdot\dfrac{\cos^225^0}{\sin^225^0}\cdot\sin25^0-1\)
\(=\dfrac{\sin^225^0+\cos^225^0}{\cos^225^0}\cdot\dfrac{\cos^225^0}{\sin25^0}-1\)
\(=\dfrac{1}{\sin25^0}-1\)
\(=\dfrac{1-\sin25^0}{\sin25^0}\)
Tính \(A=\sin^225^o+sin^265^{6o}-tan35^o+cot55^o-\frac{cot32^o}{tan58^o}\)
\(A=sin^225+cos^2\left(90-65\right)-tan35+tan\left(90-55\right)-\frac{cot32}{cot\left(90-58\right)}\)
\(=sin^225+cos^225-tan35+tan35-\frac{cot32}{cot32}\)
\(=1-0-1=0\)
Thực hiện phép tính
a) \(\tan40^o.\cot40^o+\frac{\sin50^o}{\cos40^o}\)
b) \(\cot44^o.\cot45^o.\cot46^o\)
c)\(\left(1+\tan^225^o\right).\sin^265^o\)
d) \(\tan35^o.\tan40^o.\tan45^o.\tan50^o.\tan55^o\)
e) \(\cos^220^o+\cos^240^o+\cos^250^o+\cos^270^o\)
f) \(\sin^227^o+\cos^227^o+\tan27^o-\cot73^o\)
a/ \(\tan40.\cot40+\frac{\sin50}{\cos40}\)
\(=1+\frac{\cos40}{\cos40}=1+1=2\)
\(\sin^225+\sin^265-\tan35+\cot55-\dfrac{\cot32}{\tan58}\)
giúp mik vs ạ
Tính giá trị bt sau:
\(A=sin^225^o+sin^265^o-tan35^o+cot55^o-\frac{cot32^o}{tan58^o}\)
Giúp mình với nhé:
Hãy tính biểu thức sau:
\(\sin^225^o+\sin^265^o-\tan35^o+\cot55^o-\frac{\cot32^o}{\tan58^o}\)
\(\sin^225^o+\sin^265^o-\tan35^o+\cot55^o-\frac{\cot32^o}{tan58^o}\)
\(=\cos^265^o+\sin^265^o-\cot55^{^{ }o}+\cot55^o-\frac{\tan58^o}{\tan58^o}\)
\(=1-0-1\)
\(=0\)
nhớ k cho mik nha ^^
( 1 + \(\tan^225\text{°}\) )\(\sin^265\text{°}\)
Tính:
\(C=\frac{\tan^2\alpha\left(1+\cos^3\alpha\right)+\cot^2\alpha\left(1+\sin^3\alpha\right)}{\left(\sin^3\alpha+\cos^3\alpha\right)\left(1+\sin^3\alpha+\cos\alpha\right)}\)
Biết \(\tan\alpha=\tan35^o.\tan36^o.\tan37^o.....\tan57^o\)