Chứng minh giá trị biểu thức sau là số nguyên
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Chứng minh số sau đây là số nguyên:
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) =\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)=\(\sqrt{\sqrt{5}-\sqrt{3-\left|2\sqrt{5}-3\right|}}\)=\(\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)=\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)=\(\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)=\(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)=\(\sqrt{\sqrt{5}-\left|\sqrt{5}-1\right|}\)=\(\sqrt{\sqrt{5}-\sqrt{5}+1}\)=\(\sqrt{1}\)=1( là số nguyên )
=> Số đã cho nguyên
Chứng minh biểu thức sau là số nguyên: \(Q=\sqrt{\sqrt{5}-1}\left(\sqrt{8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}}-\sqrt{7-\sqrt{20}}\right)\)
\(Q=\sqrt{\sqrt{5}-1}\left(\sqrt{8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}}-\sqrt{7-\sqrt{20}}\right)\)
\(\Rightarrow\)\(Q^2=\left(\sqrt{5}-1\right)\left(8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}+7-\sqrt{20}-2\sqrt{\left(7-\sqrt{20}\right)\left(8-\sqrt{5}+2\sqrt{5\sqrt{5}-3}\right)}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}\right)\left(8-\sqrt{5}\right)+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{66-23\sqrt{5}+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(49-28\sqrt{5}+20\right)+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}+\left(5\sqrt{5}-3\right)}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}\right)^2+2\left(7-2\sqrt{5}\right)\sqrt{5\sqrt{5}-3}+\left(5\sqrt{5}-3\right)}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\sqrt{\left(7-2\sqrt{5}+\sqrt{5\sqrt{5}-3}\right)^2}\right)\)
\(=\left(\sqrt{5}-1\right)\left(15-3\sqrt{5}+2\sqrt{5\sqrt{5}-3}-2\left(7-2\sqrt{5}+\sqrt{5\sqrt{5}-3}\right)\right)\)
\(=\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)\)\(=4\)
\(\Rightarrow Q^2=4\) \(\Rightarrow Q\) nguyên
Chứng minh các biểu thức sau có giá trị là một số nguyên
a)\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b) \(B=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
a) A=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)(đpcm)
b) B=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
=\(\left(4\sqrt{10}+\sqrt{150}-4\sqrt{6}-\sqrt{90}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
=\(\left(4\sqrt{10}+5\sqrt{6}-4\sqrt{6}-3\sqrt{10}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
=\(\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
=\(5-\sqrt{15}+\sqrt{15}-3=2\)(đpcm)
Cho biểu thức A=\(\dfrac{6-2\sqrt{x}}{\sqrt{x}-5}\) và B=\(\dfrac{1}{\sqrt{x}-5}-\dfrac{x+3\sqrt{x}}{25-x}\)với x>0, x # 25.
1) Tính giá trị biểu thức A khi x =16.
2) Chứng minh rằng A +B là một số nguyên.
1: Thay x=16 vào A, ta được:
\(A=\dfrac{6-2\cdot4}{4-5}=\dfrac{-2}{-1}=2\)
Chứng minh biểu thức sau nhận giá trị nguyên:
\(D=\left(\sqrt{3}-1\right)\sqrt{6+2.\sqrt{2.}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18}-\sqrt{128}}}}\)
Rút gọn các biểu thức:
\(\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7+\sqrt{3}}}}{\sqrt{\sqrt{7-2}}}\)
Tính giá trị biểu thức:
\(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Bài 1: Tính giá trị của biểu thức:\(\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 2: Chứng minh rằng các biểu thức sau có giá trị là số nguyên
A = \(\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
B = \(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Chứng minh rằng biểu thức sau nhận giá trị nguyên:
\(B=\frac{\left(5+2.\sqrt{6}\right)\left(49-20.\sqrt{6}\right)\sqrt{5-2.\sqrt{6}}}{9.\sqrt{3-11.\sqrt{2}}}\)
Chứng minh rằng các số sau đây là số nguyên:
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
B = \(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
Trả lời:
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(A=\sqrt{1}\)
\(A=1\)
\(B=\frac{\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{\left(3+2\sqrt{6}+2\right).\left(49-20\sqrt{6}\right).\sqrt{3-2\sqrt{6}+2}}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{33}-11\sqrt{2}}\)
\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right).\left(49-20\sqrt{6}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{\left(3-2\right).\left(49\sqrt{3}-60\sqrt{2}+49\sqrt{2}-40\sqrt{3}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{1.\left(9\sqrt{3}-11\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(B=1\)
a) Ta có: \(\sqrt{29-12\sqrt{5}}=\sqrt{20-12\sqrt{5}+9}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\Rightarrow\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{3-\left(2\sqrt{5}-3\right)}=\sqrt{3-2\sqrt{5}+3}\)
\(=\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)
\(\Leftrightarrow A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)( đpcm )