Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Diệu Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 13:43

Gọi H là tâm đáy \(\Rightarrow SH\perp\left(ABC\right)\)

Ta có: \(AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)

Áp dụng định lý Pitago:

\(SH=\sqrt{SA^2-AH^2}=\dfrac{a\sqrt{33}}{3}\)

\(V=\dfrac{1}{3}SH.S_{ABC}=\dfrac{1}{3}.\dfrac{a\sqrt{33}}{3}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{11}}{12}\)

nguyễn đặng minh quân
Xem chi tiết
Kim Ngân
Xem chi tiết
Kim Ngân
Xem chi tiết
Hung Nguyễn
Xem chi tiết
Quỳnh Như
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2017 lúc 11:07

Đáp án A

Gọi H là trung điểm AB. Ta có 2 tam giác SAB và ABC đều và bằng nhau nên SH = CH= a 3    . Mà S Δ A B C = a 2 3 ⇒ V S . A B C = 1 3 a 2 3 . a 3 = a 3

Diệu Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 13:47

\(AC=\sqrt{BC^2-AB^2}=\dfrac{a\sqrt{3}}{4}\)

Gọi H là hình chiếu vuông góc của S lên đáy

Do \(SA=SB=SC\Rightarrow HA=HB=HC\Rightarrow H\) là tâm đường tròn ngoại tiếp ABC

Mà ABC vuông tại A \(\Rightarrow H\) là trung điểm BC

\(\Rightarrow BH=\dfrac{1}{2}BC=\dfrac{a}{2}\)

\(\Rightarrow SH=\sqrt{SB^2-BH^2}=\dfrac{a\sqrt{15}}{2}\)

\(V=\dfrac{1}{3}SH.\dfrac{1}{2}AB.AC=\dfrac{1}{3}.\dfrac{a\sqrt{15}}{2}.\dfrac{1}{2}.\dfrac{a}{2}.\dfrac{a\sqrt{3}}{4}=\dfrac{a^3\sqrt{5}}{32}\)

Lê vsbzhsjskskskssm
Xem chi tiết
Hồng Quang
9 tháng 7 2021 lúc 21:24

hình như đáp số hơi xấu thì phải bạn ạ? :D có gì check lại các phép toán hộ mình nhé

Hình vẽ minh họa và các thao tác vẽ hình ở bên dưới 

Dễ tính: \(SK=\sqrt{SB^2-BK^2}=\dfrac{a\sqrt{7}}{6}\) 

Ta lại có: \(S_{SAK}=\dfrac{1}{2}SG.AK=\dfrac{1}{2}HK.SA\) 

\(\Rightarrow HK=\dfrac{SG.AK}{SA}=\dfrac{a}{3}\) Trong đó: \(SG=\dfrac{a}{3};AK=\dfrac{2a}{3};SA=SB=SC=\dfrac{2a}{3}\) ( Tam giác SAK cân tại A )

\(\Rightarrow SH=\sqrt{SK^2-HK^2}=\dfrac{a\sqrt{3}}{6}\)

Theo định lý Symson: \(\dfrac{S_{SHBC}}{S_{SABC}}=\dfrac{SH}{SA}=\dfrac{\sqrt{3}}{4}\Rightarrow S_{SHBC}=\dfrac{\sqrt{3}}{4}S_{SABC}\) (1)

\(\Rightarrow S_{HABC}=\left(\dfrac{4-\sqrt{3}}{4}\right)S_{SABC}\) (2) 

Từ (1) và (2) suy ra được tỉ lệ thể tích giữa 2 phần là: \(\dfrac{3+4\sqrt{3}}{13}\) 

undefined

 

Lê vsbzhsjskskskssm
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 7 2021 lúc 15:51

Kiểm tra lại đề bài câu này

Nếu góc giữa SB và đáy là 30 độ thì (P) sẽ cắt SA tại 1 điểm nằm ngoài khối chóp (nằm phía trên điểm S chứ không nằm giữa S và A) nên không thể chia khối chóp thành 2 phần được.