cho hình chóp SABC có đáy là tam giác đều cạnh 4a. M là trung điểm cạnh BC, H là trung điểm cạnh AM, SH vuông góc với (ABC), góc giữa ((SAB),(ABC)) = 60 độ. Tính V SABC và ((SAB),(SAC))
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=a, SA vuông góc với mặt phẳng (ABC), góc giữa 2 mặt phẳng (SBC) và (ABC) bằng 30 độ. Gọi M là trung điểm của cạnh SC. Tính thể tích khối chóp S.ABM theo a.
cho hình chóp SABC có đáy ABC là tam giác vuông cân tại C, BC=a. Hình chiếu vuông góc của S lên mặt phẳng ABC là trung điểm H của cạnh AB, biết rằng SH=2a. Tính theo a thể tích khổi chóp và khoảng cách từ điểm B đế (MAC) với M là trung điểm SB
cho hình chóp sabcd có đáy là tam giác vuông cân tại a,ab=a√2,sa=sb=sc,góc giữa sa và mặt phẳng(abc )=60 độ.tính thể tích sabc và khoảng cách từ a đến mặt phẳng (sbc)
cho hình chóp SABC có đáy là tam giác vuông tại A, AB=a, BC=2a. Hình chiếu của B' lên (ABC) trùng với tâm đường tròn ngoại tiếp H của tam giác ABC, góc giữa ((CC',(A'B'C')) bằng 60 độ. Tính V ABC.A'B'C' và góc giữa HB' và (ABB')
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABC) là H thuộc cạnh AB sao cho HA=2HB. Góc giữa 2 đường thẳng SC và mặt phẳng (ABC) bằng 60 độ. Tính thể tích khối chóp A.ABC và tính khoảng cách giữa 2 đường thẳng SA và BC theo a
cho hinh chóp SABC có đáy ABC đều cạnh a,tam giác SAC cân tại S ,mp(SAC) vuông góc với đáy,góc giữa SB và mặt phẳng (ABC) bằng 60,M là trung điểm BC tính d(SM,AC)
Cho hình chóp tam giác đều S.ABC với SA=2a, AB = a. Gọi H là hình chiếu vuông góc của A trên cạnh SC. Chứng minh SC vuông góc với mặt phẳng(ABH). Tính thể tích của khối chóp S.ABH theo a
Cho hình chóp S.ABCcó đáy ABC là tam giác đều, cạnh 4a. Tam giác SAB nằm trong mặt phẳng vuông góc với đáy, biết rằng hình chiếu của S lên mặt phẳng đáy là điểm H nằm trên cạnh AB và AH =a. Góc hợp bởi SC với mặt phẳng đáy là 60 độ. Tính thể tích khối chóp S.ABC