Gọi D là trung điểm của cạnh AB và O là tâm của tam giác ABC.
Ta có \(\begin{cases}AB\perp CD\\AB\perp SO\end{cases}\) nên \(AB\perp\left(SCD\right)\)
Do đó \(AB\perp SC\)
Mặt khác \(SC\perp AH\) suy ra \(SC\perp\left(ABH\right)\)
Ta có : \(CD=\frac{a\sqrt{3}}{2};OC=\frac{a\sqrt{3}}{2}\) nên \(SO=\sqrt{SC^2-OC^2}=\frac{a\sqrt{33}}{3}\)
Do đó : \(DH=\frac{SO.CD}{SC}=\frac{a\sqrt{11}}{4}\Rightarrow S_{\Delta ABH}=\frac{1}{2}AB.DH=\frac{\sqrt{11}a^2}{8}\)
Ta có : \(SH=SC-HC=SC-\sqrt{CD^2-DH^2}=\frac{7a}{4}\)
Do đó : \(V_{S.ABH}=\frac{1}{3}SH.S_{\Delta ABH}=\frac{7\sqrt{11}a^3}{96}\)
V(SABC) = SA.S(ABC)/3 = 2a.(a√3/2).a/6 = a^3√3/6
gọi khoảng cách từ A đến mp(SBC) là h, ta có:
V1 = V(SAMN) = V(ASMN) = S(SMN).h/3
V = V(SABC) = V(ASBC) = S(SBC).h/3
=> V1/V = S(SMN)/S(SBC) = 1/2.SM.SN.sin(MSN^)/1/2.SB.SC.sin(MSN^) = (SM/SB).(SN/SC)
SB = SC (do AB = AC) và SM = SN ( = SA^2/SB)
=> V1/V = (SM/SB)^2
SB^2 = SA^2 + AB^2 = 4a^2 + a^2 = 5a^2 => SB = a√5
SM = SA^2/SB = 4a^2/(a√5) = 4a/√5
=> V1/V = (16a^2/5)/(5a^2) = 16/25
=> (V - V1)/V = 9/25
=> V(A.BCNM) = (V - V1) = 9.V/25 = 9.(a^3√3/6)/25 = 3a^3√3/50