Chứng minh 99^2021-98^2022 chia hết cho 5
Hãy chứng tỏ 2021^3 + 2021^4+ 2021^5+ 2021^6+ 2021^7 chia hết cho 2022
cho B=1.2.3....2022(1+1/2+1/3+....+1/2022)<chứng minh rằng B chia hết cho 2021
\(B=2021\cdot1\cdot2\cdot3\cdot...\cdot2022\cdot\left(1+\dfrac{1}{2}+...+\dfrac{1}{2022}\right)⋮2021\)
So sánh:
a) A=\(\dfrac{98^{88}+1}{98^{98}+1}\)và B=\(\dfrac{98^{89}+1}{98^{99}+1}\) b) C=\(\dfrac{2022^{2023}+1}{2022^{2021}+1}\)và D=\(\dfrac{2022^{2021}+1}{2022^{2019}+1}\)
a: \(98^{10}\cdot A=\dfrac{98^{98}+98^{10}}{98^{98}+1}=1+\dfrac{98^{10}-1}{98^{98}+1}\)
\(98^{10}\cdot B=\dfrac{98^{99}+98^{10}}{98^{99}+1}=1+\dfrac{98^{10}-1}{98^{99}+1}\)
98^88+1>98^99+1
=>A<B
b: \(\dfrac{1}{2022^2}\cdot C=\dfrac{2022^{2023}+1}{2022^{2023}+2022^2}=1+\dfrac{1-2022^2}{2022^{2023}+2022^2}\)
\(\dfrac{1}{2022^2}\cdot D=\dfrac{2022^{2021}+1}{2022^{2021}+2022^2}=1+\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
2022^2023>2022^2021
=>2022^2023+2022^2>2022^2021+2022^2
=>\(\dfrac{2022^2-1}{2022^{2023}+2022^2}< \dfrac{2022^2-1}{2022^{2021}+2022^2}\)
=>\(\dfrac{1-2022^2}{2022^{2023}+2022^2}>\dfrac{1-2022^2}{2022^{2021}+2022^2}\)
=>C>D
chứng minh 2021 mũ 2020 + 2025 mũ 2025 +2022 mũ 10 chia hết cho 10
20212020 tận cùng là 1 ; 20252025 tận cùng là 5
202210 = (20224)2.20222 = (...6)2.(...4) = (...6).(...4) tận cùng là 4 (vì 6.4 = 24 tận cùng là 4)
Chứng minh rằng A = 8 + 8^2 + 8^3 + 8^4 + ... + 8^2021 + 8^2022 chia hết cho 9
\(A=8\left(1+8\right)+8^3\left(1+8\right)+...+8^{2021}\left(1+8\right)\)
\(=8.9+8^3.9+...+8^{2021}.9=9\left(8+8^3+...+8^{2021}\right)⋮9\)
Chứng minh rằng:
a) A = 5 + 5^2 + 5^3 + …+ 5^100 chia hết cho 5 nhưng không chia hết chi 25
b) B = 5 + 5^2 + 5^3 + …+ 5^20 chia hết cho 6
c) C = 5 + 5^2 + 5^3 + …+ 5^2022 + 5^2023 không chia hết cho 6
d) D = 1 + 2 + 2^2 + 2^3 + …+ 2^2021 chia hết cho 7
a) Ta có:
\( A = 5+5^2+5^3+\ldots+5^{100} \)
Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).
Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).
Do đó, A chia hết cho 5.
Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).
Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).
Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).
Do đó, A không chia hết cho 25.
b) Ta có:
\( B = 5+5^2+5^3+\ldots+5^{20} \)
Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).
Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).
Do đó, B chia hết cho 6.
c) Ta có:
\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)
Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).
Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).
Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).
Do đó, C không chia hết cho 6.
d) Ta có:
\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)
Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).
Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục
mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))
a, A = 5 + 52 + 53 + ... + 5100
A = 5. ( 1 + 5 + ...+ 599)
5 ⋮ 5 ⇒A = 5.(1 + 5 + ...+ 599) ⋮ 5 (1)
A = 5 + 52 + 53 + ... + 5100
A = 5 + 52.( 1 + 5 + 52 + ... + 598)
A = 5 + 25 . ( 1 + 5 + 52 +...+ 598)
Vì 25 ⋮ 25 nên 25.(1 + 5 + 52 +... + 598) ⋮ 25
5 không chia hết cho 25 nên
A = 5 + 25.( 1 + 5 +...+ 598) không chia hết cho 25 (2)
Kết hợp (1) và (2) ta có:
A ⋮ 5 nhưng không chia hết cho 25 (đpcm)
P(x)=x^101-2022*x^100+2022*x^99-2022*x^98+...+2022*x-1
Khi x=2021
Ta có \(x+1=2022\)
\(P\left(x\right)=x^{101}-\left(x+1\right)x^{100}+...+\left(x+1\right)x-1\)
\(=x^{101}-x^{101}-x^{100}+...+x^2+x-1=x-1\)
-> P(x) = 2020
Chứng minh rằng ab (a + b + 2021^2022 + 1) chia hết cho 2 với a, b thuộc Z
Cần gấp mn ơi
Lời giải:
Nếu $a,b$ khác tính chẵn lẻ, tức là 1 trong 2 số sẽ có 1 số chẵn và 1 số lẻ.
$\Rightarrow ab\vdots 2$
$\Rightarrow ab(a+b+2021^{2022}+1)\vdots 2$
Nếu $a,b$ cùng tính chẵn lẻ
$\Rightarrow a+b$ chẵn
$\Rightarrow a+b+2021^{2022}+1$ chẵn
$\Rightarrow ab(a+b+2021^{2022}+1)$ chẵn, hay $\vdots 2$
Từ 2 TH vừa xét ta có đpcm.