tìm giá trị nhỏ nhất của 14x^2-8x+9/3x^2+6x+9
tìm giá trị nhỏ nhất của\(\frac{14x^2-8x+9}{3x^2+6x+9}\)
Tìm giá trị nhỏ nhất:
A=|3x+1|+|x+2|-4x+3
B= \(\frac{14x^2-8x+9}{3x^2+6x+9}\)
Giá trị nhỏ nhất của biểu thức:\(B=\frac{14x^2-8x+9}{3x^2+6x+9}\)là ?
Tìm giá trị nhỏ nhất của biểu thức \(B=\frac{14x^2-8x+9}{3^2+6x+9}\)
Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\left|3x+1\right|+\left|x+2\right|-4x+3\)
b)\(B=\frac{14x^2-8x+9}{3x^2+6x+9}\)
Giá trị nhỏ nhất của B = \(\dfrac{14x^2-8x+9}{3x^2+6x+9}\)
\(B=\dfrac{2}{3}+\dfrac{\left(2x-1\right)^2}{x^2+2x+3}=\dfrac{2}{3}+\dfrac{\left(2x-1\right)^2}{\left(x+1\right)^2+2}\)
vì \(\dfrac{\left(2x-1\right)^2}{\left(x+1\right)^2+2}\ge0\)
\(B_{nn}\Leftrightarrow\dfrac{\left(2x-1\right)^2}{\left(x+1\right)^2+2}\)(nn)
\(\Rightarrow B\ge\dfrac{2}{3}\)
B(nn)=\(\dfrac{2}{3}\) ; khi 2x-1 =0 hay x=1/2
Giá trị nhỏ nhất của biểu thức B = \(\frac{14x^2-8x+9}{3x^2+6x+9}\)
\(B=\frac{14\left(x^2+2x+3\right)-36x-33}{3\left(x^2+2x+3\right)}=\frac{14}{3}+\frac{-3.\left(12x+11\right)}{3.\left(x^2+2x+3\right)}=\frac{14}{3}-C\)
\(C=\frac{12x+11}{x^2+2x+3}=\frac{12\left(x+1\right)-1}{\left(x+1\right)^2+2}=\frac{12y-1}{y^2+2}=D\)
\(4-D=\frac{4y^2+8-\left(12y-1\right)}{4\left(y^2+2\right)}=\frac{\left(2y-3\right)^2}{4\left(y^2+2\right)}\ge0\)
\(D\le4\Rightarrow C\le4\Rightarrow B\ge\frac{14}{3}-4=\frac{2}{3}\)
GTNN B=2/3 khi y=3/2=> x=1/2
tìm giá trị nhỏ nhất \(\frac{14x^2-8x+9}{3x^2+6x+9}\)
Tử=14(x-2/7)^2+55/7
Mẫu=3(x+1)^2+6
.... lm tiếp nhé mệt r
Tìm giá trị nhỏ nhất của
A = \(\sqrt{3x^2-6x+9}+x^4-8x^2-x+2019\)
Mọi người giúp em với mai em thi rồi ạ
\(\left[3\left(x-1\right)^2+6\right]\left(3+6\right)\ge\left[3\left(x-1\right)+6\right]^2\)
\(\Leftrightarrow3x^2-6x+9\ge x+5\)
\(\Rightarrow A\ge x^4-8x^2+2024=\left(x^2-4\right)^2+2008\ge2008\)
Dấu "=" xảy ra khi \(x=2\)