Cho:\(\frac{2a+b}{a-2b}=\frac{c+2d}{c-2d}\).Chứng minh rằng: \(\frac{a}{b}=\frac{c}{d}\).
Cho \(\frac{a+2c}{b+2d}=\frac{2a+c}{2b+d}\) .
CMR : \(\frac{a}{b}=\frac{a+c}{b+d};\frac{2a-c}{2b-d}=\frac{a-2c}{b-2d};\frac{a+2b}{a-b}=\frac{c+2d}{c-d}\)
Cho:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Tính: P\(\frac{2a-b}{2c-d}+\frac{2b-c}{2d-a}+\frac{2c-d}{2a-b}+\frac{2d-a}{2b-c}\)
Giúp với ai nhanh mình tick cho.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
cho a/b = c/d. chứng minh rằng \(\frac{a^3+2b^3}{c^3+2d^3}=\frac{a^2b}{c^2d}\)
cho \(\frac{a}{b}=\frac{c}{d}\)
chứng minh rằng : \(\frac{a^3+2b^3}{c^3+2d^3}=\frac{a^2b}{c^2d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^2b}{c^2d}=\frac{2b^3}{2d^3}=\frac{a^3+2b^3}{c^3+2d^3}\)
=>đpcm
cho \(\frac{a}{b}=\frac{c}{d}\left(b,c,d\ne0;c-2d\ne0\right)\)
chứng minh rằng \(\frac{\left(a-2b^4\right)}{\left(c-2d^4\right)}=\frac{a^4+2017b^4}{c^4+2017d^a}\)
1.Chứng minh:
\(\frac{a}{a+2b}=\frac{c}{c +2d}\)
2. Chứng minh:
\(\frac{b}{2a-b}=\frac{d}{2c-d}\)
\(\frac{a}{a+2b}=\frac{c}{c+2d}\Rightarrow ac+2ad=ac+2bc\Rightarrow2ad=2bc\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
\(\frac{b}{2a-b}=\frac{d}{2c-d}\Rightarrow2cb-bd=2ad-bd\Rightarrow2ad=2cb\Rightarrow ad=cd\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Cho a, b, c, d > 0. Chứng minh: \(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\) (Dùng Cô-si)
Uầy đăng đề cũng thiếu, rồi ai làm cho baybe :)))?
Cho biết \(\frac{a}{b}=\frac{c}{d}\)với điều kiện b khác 0; d khác 0; c khác 3d; c khác -2d, hãy chứng minh rằng \(\frac{a-3b}{c-3d}=\frac{a+2b}{c+2d}\)
Cho a, b, c, d là các số thực dương. Chứng minh :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)