Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh: \(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)
Bài 1: Tìm x biết: \(\left|x-\frac{2}{3}\right|-\left|x-7\right|=\frac{5}{3}\)
Bìa 2: Cho \(\frac{a}{b}=\frac{c}{d}\) và b+d\(\ne0\) . Chứng minh rằng \(\frac{a^{2009}+c^{2009}}{b^{2009}+d^{2009}}=\frac{\left(a+c\right)^{2009}}{\left(b+d\right)^{2009}}\)
tìm x biết
a) \(\frac{x-1}{x+2}=\frac{4}{5}\left(x\ne-2\right)\) b)22x+1+4x+3=264 c)\(\frac{x^2}{-8}=\frac{27}{x}\left(x\ne0\right)\) d)\(\frac{x+7}{-20}=\frac{-5}{x+7}\left(x\ne-7\right)\) e)\(\frac{x}{-8}=\frac{2}{-x^3}\left(x\ne0\right)\)
Cho a,b,c,d thỏa mãn: \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}\). Chứng minh \(\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
Cho \(a+c=2b\) và \(2bd=c\left(b+d\right);b,d\ne0\)
CMR : \(\frac{a}{b}=\frac{c}{d}\)
1.Cho \(\frac{a_1}{2a_2}=\frac{2a_2}{3a_3}=.......=\frac{2015a_{2015}}{2016a_{2016}}=\frac{2016a_{2016}}{a_1}\) và \(a_1+a_2+a_3+...+a_{2016}\ne0\)
CMR \(a_1=a_2=a_3...=a_{2016}\)
2.Cho\(\frac{a}{2014}=\frac{a}{2015}=\frac{a}{2016}\) CMR:\(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
3.Tìm x,y,z biết \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và \(x^2-\left(x-y\right)=0\)
4.Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) CMR \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
Giúp mình với ạ!Mai phải nộp rồi☹
Cho a,b,c thỏa mãn: \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}\). Chứng minh \(\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
Cho : \(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)
Chứng minh ràng: \(\left(2018a+2019c\right)\left(b+d\right)=\left(a+c\right)\left(2018b+2019d\right)\)
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
Cho các số nguyên dương a,b,c,d và \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)