Cho 3 số a,b,c thỏa a+b+c=0,tính:
K=a²(2a+b)+c²(2c+b)+b(b²-4ca)
Cho các số a,b,c thoả mãn a+b+c=0.Cmr
a^2.(2a+b)+c^2.(2c+b)b.(b^2-4ca)=0
Cho a,b,c là các số thực khác 0 thỏa mãn. Tính giá trị biểu thức:
\(P=\frac{a^2c}{a^2c+c^2b+b^2a}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
cho a,b,c là các số thỏa mãn (a+b+c)^3=48+(2a-b)^3+(2b-c)^3+(2c-a)^3. Tính giá trị của (2a+b-c)(2b+c-a)(2c+a-b)
Cho 3 số dương a,b,c thỏa măn 2a+b-c/c = 2b+c-a/a = 2c+a-b/b
Tính A= (3a-c)(3b-a)(3c-b)/(3a-2b)(3b-2c)(3c-2a)
cho 3 số a, b, c khác 0 thỏa mãn điều kiện 2a+b+c/a=a+2b+c/b=a+b+2c/c Tính A=a+b/c+b+c/a+c+a/b
Giúp mk nha! Mk thanks trc ^_^
Ta có: \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)
\(\Rightarrow\frac{2a+b+c}{a}-1=\frac{a+2b+c}{b}-1=\frac{a+b+2c}{c}-1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Mà \(a,b,c\ne0\)
=> a = b= c
\(A=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(=\frac{c+c}{c}+\frac{a+a}{a}+\frac{b+b}{b}\)
\(=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}\)
\(=2+2+2=6\)
cho A=(4bc-a2)/(bc+2a2); B=(4ca-b2)/(ca+2a2); C=(4ab-c2)/(ab+2c2)
Chứng minh rằng nếu a+b+c=0 thì a.b.c=1
Cho a,b,c là các số dương thỏa mãn a^2+b^2+c^2 +6=2(a+2b+c).Tính K=√2a+3b+c
A,K=6
B,K=2
C,K=3
D,K=8
Lời giải:
$a^2+b^2+c^2+6=2(a+2b+c)$
$\Leftrightarrow (a^2-2a+1)+(b^2-4b+4)+(c^2-2c+1)=0$
$\Leftrightarrow (a-1)^2+(b-2)^2+(c-1)^2=0$
Vì $(a-1)^2\geq 0; (b-2)^2\geq 0; (c-1)^2\geq 0$ với mọi $a,b,c\in\mathbb{R}$ nên để tổng của chúng bằng $0$ thì:
$(a-1)^2=(b-2)^2=(c-1)^2=0$
$\Rightarrow a=c=1; b=2$
$\Rightarrow K=3$
Đáp án C.
bài 1: cho a,b,c thỏa mãn a+b+c=0
tính: (a+2b)2+(b+2c)2+(c+2a)2 / (a-2b)2+(b-2c)2+(c-2a)2
bài 2: cho số a,b,c có tổng khác 0 thỏa mãn: a3+b3+c3=3abc
tính: ab+2bc+3ca / 3a2+4b2+5c2
1.
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
Ta có:
\(\dfrac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}\)
\(=\dfrac{a^2+4b^2+4ab+b^2+4c^2+4bc+c^2+4a^2+4ca}{a^2+4b^2-4ab+b^2+4c^2-4bc+c^2+4a^2-4ca}\)
\(=\dfrac{5\left(a^2+b^2+c^2\right)+4\left(ab+bc+ca\right)}{5\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-10\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)}{-10\left(ab+bc+ca\right)-4\left(ab+bc+ca\right)}\)
\(=\dfrac{-6}{-14}=\dfrac{3}{7}\)
b.
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3abc\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow\dfrac{ab+2bc+3ca}{3a^2+4b^2+5c^2}=\dfrac{a^2+2a^2+3a^2}{3a^2+4a^2+5a^2}=\dfrac{6}{12}=\dfrac{1}{2}\)