Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Nhat
Xem chi tiết
việt nam tùng
Xem chi tiết
Bùi Thế Hào
31 tháng 3 2018 lúc 15:35

3x+2y=5 => y = (5-3x)/2 

E=xy = x(5-3x)/2 

=> 2E=5x-3x2 = -3(x2-5x/3)

=> \(2E=-3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}-\frac{25}{36}\right)\)

=> \(2E=\frac{25}{12}-3\left(x-\frac{5}{6}\right)^2\)

Nhận thấy: \(\left(x-\frac{5}{6}\right)^2\ge0\) Với mọi x

=> Giá trị lớn nhất của 2E là 25/12, đạt được khi x=5/6

=> \(E_{min}=\frac{25}{24}\) đạt được khi x=5/6

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2018 lúc 18:21

nguyễn mai thùy trâm
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2019 lúc 11:52

Đáp án C.

Ta có

Khi đó, giả thiết trở thành:

log 3 x + y x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 - 3 x + y - 2

⇔ log 3 x + y - log 3 x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 - 3 x + y - 2

⇔ 3 x + y + log 3 3 x + y = x 2 + y 2 + x y + 2 + log 3 x 2 + y 2 + x y + 2

Xét hàm số  f t = t + log 3   t  trên khoảng  0 ; + ∞ , có  f ' t = 1 + 1 t   ln 3 > 0 ; ∀ t > 0 .

Suy ra f(t) là hàm số đồng biến trên 0 ; + ∞  mà f[3(x + y)] = f(x2 + y2 + xy + 2)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 12 2018 lúc 2:05

Đáp án C.

Ta có x x − 3 + y y − 3 + x y

= x 2 + y 2 + x y − 3 x − 3 y = x 2 + y 2 + x y + 2 − 3 x + y − 2

Khi đó, giả thiết trở thành:

log 3 x + y x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 − 3 x + y − 2  

⇔ log 3 x + y − log 3 x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 − 3 x + y − 2  

⇔ 3 x + y + log 3 3 x + y = x 2 + y 2 + x y + 2 + log 3 x 2 + y 2 + x y + 2  

Xét hàm số f t = t + log 3 t  trên khoảng  0 ; + ∞ ,

có f ' t = 1 + 1 t ln 3 > ;   ∀ t > 0.

Suy ra f( t) là hàm số đồng biến trên  0 ; + ∞

mà f 3 x + y = f x 2 + y 2 + x y + 2  

⇔ 2 x + y 2 − 6 2 x + y + 5 = − 3 y − 1 2 ≤ 0 ⇔ 1 ≤ 2 x + y ≤ 5.  

Khi đó P = 1 + 2 x + y − 5 x + y + 6 ≤ 1  

vì 2 x + y − 5 ≤ 0 x + y + 6 > 0 .  Vậy  P m a x = 1.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 11 2019 lúc 17:45

Chọn A.

Phương pháp:

- Biến đổi điều kiện bài cho về dạng f u = f v  với u, v là các biểu thức của x, y.

- Xét hàm f t  suy ra mối quan hệ của u, v rồi suy ra x, y.

- Đánh giá P theo biến t=x+y bằng cách sử dụng phương pháp hàm số.

Cách giải:

phạm thu hiên
Xem chi tiết
Trương Huy Hoàng
15 tháng 1 2021 lúc 22:08

Bài 1:

A = 3(x + 1)2 + 5 

Ta có: (x + 1)2 \(\ge\) 0 Với mọi x

\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 3(x + 1)+ 5 \(\ge\) 5 với mọi x

Hay A \(\ge\) 5

Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1

Vậy...

B = 2|x + y| + 3x2 - 10

Ta có: 2|x + y| \(\ge\) 0 với mọi x, y

3x\(\ge\) 0 với mọi x

\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y

Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0

\(\Rightarrow\) x = y = 0

Vậy ...

C = 12(x - y)2 + x2 - 6

Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y

x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = y = 0

Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất

Bài 2:

Phần A ko rõ đầu bài!

B = 3 - (x + 1)2 - 3(x + 2y)2

Ta có: -(x + 1)2 \(\le\) 0 với mọi x

-3(x + 2y)\(\le\) 0 với mọi x, y

\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)\(\le\) 3 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0

\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)

Vậy ...

C = -12 - 3|x + 1| - 2(y - 1)2

Ta có: -3|x + 1| \(\le\) 0 với mọi x

-2(y - 1)2 \(\le\) 0 với mọi y

\(\Rightarrow\)  -12 - 3|x + 1| - 2(y - 1)\(\le\) -12 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0

\(\Rightarrow\) x = -1; y = 1

Vậy ...

Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa

F = \(\dfrac{-5}{3}\) - 2x2

Ta có: -2x2 \(\le\) 0 với mọi x

\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy ...

Chúc bn học tốt!

phương thảo vũ
Xem chi tiết
Nguyễn Công Tỉnh
6 tháng 1 2019 lúc 12:50

-x^2+3x+2

\(=-\left(x^2-3x-2\right)\)

\(=-\left(x^2-3x+\frac{9}{4}-\frac{17}{4}\right)\)

\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{17}{4}\right]\)

\(=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)

=>GTLN khi \(x-\frac{3}{2}=0\)

\(\Rightarrow x=\frac{3}{2}\)

Nguyệt
6 tháng 1 2019 lúc 12:53

\(-x^2+3x+2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\)

\(x.\left(1-2x\right)=x-2x^2=-2x^2+x=-2\left(x^2-\frac{1}{2}x\right)=-2.\left(x^2-\frac{2.x.1}{4}+\frac{1}{16}\right)+\frac{1}{8}=-2.\left(x-\frac{1}{4}\right)^2+\frac{1}{8}\le\frac{1}{8}\)

tự vt dấu = xảy ra nha :))

Trường Tuệ Lê
Xem chi tiết

a/ giá trị nhỏ nhất của A  là 2

b/ giá trị lớn nhất của B là 51

Khách vãng lai đã xóa
mystic and ma kết
2 tháng 8 2021 lúc 7:43

tớ chỉ có bài tham khảo trên mạng thôi bạn thông cảm

Ta có: x + y = 1
   <=> (x + y)3 = 1
   <=> x3 + y3 + 3xy(x + y) = 1
   <=> x3 + y3 + 3xy = 1 (do x + y = 1)
   <=> x3 + y3 = 1 - 3xy
Áp dụng BĐT Cô - si, ta có:
   xy >= (x+y)24=14(x+y)24=14
<=> -3xy≥−34≥−34
Ta có x3 + y3 = 1 - 3xy ≥1−34=14≥1−34=14
Dấu "=" xảy ra khi x = y = 1212
Vậy GTNN của x3 + y3 là 1414khi x =  y = 12

Khách vãng lai đã xóa

c/  GTNN của C là 5

d/ y = 12 , x = 12 

Khách vãng lai đã xóa