Những câu hỏi liên quan
Vy Nguyễn
Xem chi tiết
Thanh Trang Hoàng
Xem chi tiết
Vũ Trụ Bao La
18 tháng 9 2015 lúc 20:04

chưa học trả lời làm gì cho mất thời gian mất công bạn Thanh Trang Hoàng phải đọc

Bình luận (0)
Thanh Trang Hoàng
Xem chi tiết
Đỗ hoàng thiên phú
Xem chi tiết
ĐỨc Lê Hồng
Xem chi tiết
Lê Anh Tú
13 tháng 3 2018 lúc 19:12

- Gọi G là trọng tâm \(\Delta ABC\), trung tuyến BE cắt A'C tại E'.

- Gọi trung điểm B'C' là D'. BE và D'C là đường trung bình của \(\Delta CAB'\)và \(\Delta C'AB'\)

=> BE // D'C và BE = D'C 

Trung tuyến AD là đường trung bình của \(\Delta BCA'\Rightarrow GE'=BG=\frac{2}{3}\cdot BE=\frac{2}{3}\cdot D'C\) 

Gọi G' là giao của A'D' và BE' ta có:

Áp dụng định lí Talet:

\(\frac{G'E'}{D'C}=\frac{A'E'}{A'C}=\frac{AG}{AD}=\frac{2}{3}\) (AD // A'C do là đường trung bình của \(\Delta BA'C\)

\(\Rightarrow G'E'=\frac{2}{3}\cdot D'C\)

=> G'E' = GE'.

Do G và G' cùng nằm trên BE' và G, G' nằm cùng phía so với E' nên G và G' trùng nhau. 

Như vậy trung tuyến A'D' đi qua G, tương tự trung tuyến B'M' cũng đi qua G

=> G là trọng tâm của \(\Delta A'B'C'\)

"Nếu G là trọng tâm \(\Delta ABC\) thì vtGA + vtGB + vtGC = vt0"

Gọi giao của AG và BC là D. Trên AD kéo dài lấy E sao cho

DE = DG => GE = GA => vtGE = - vtGA.

Do GE và BC cắt nhau tại trung điểm D của chúng nên BGCE là hình bình hành

=> vtGB + vtGC = vtGE = -vtGA => vtGA + vtGB + vtGC = vt0

Gọi G là trọng tâm ABC, G' là trọng tâm \(\Delta A'B'C'\)

=> vtGA + vtGB + vtGC = vt0, vtG'A' + vtG'B' + vtG'C' = vt0

=> vt0 = (vtG'G + vtGA + vtAA') + (vtG'G + vtGB + vtBB') + (vtG'G + vtGC + vtCC')  

           =3vtG'G + (vtGA + vtGB + vtGC) + (vtBA + vtCB + vtAC)  
           =3vtG'G + vt0 + (vtBA + vtAC + vtCB) = 3vtG'G + vt0

=> vtG'G = vt0 

=> G' trùng với G

Bình luận (0)
Sách Giáo Khoa
Xem chi tiết
Anh Triêt
30 tháng 3 2017 lúc 14:14

Giải bài 9 trang 28 sgk Hình học 10 | Để học tốt Toán 10

Bình luận (0)
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 4 2019 lúc 6:58

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi M và M’ tương ứng là trung điểm của AC và A’C’, ta có:

I ∈ BM, G ∈ C′M, K ∈ B′M′

Theo tính chất trọng tâm của tam giác ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có :

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác IG và IK ⊂ (IGK) nên (IGK) // (BB′C′C)

b) Gọi E và F tương ứng là trung điểm của BC và B’C’, O là trung điểm của A’C. A, I, E thẳng hàng nên (AIB’) chính là (AEB’). A’, G, C thẳng hàng nên (A’GK) chính là (A’CF).

Ta có B′E // CF (do B’FCE là hình bình hành ) và AE // A′F nên (AIB′) // (A′GK).

Bình luận (0)
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
15 tháng 5 2017 lúc 11:18

Giả sử G là trọng tâm tam giác ABC, ta sẽ chứng minh G' cũng là trọng tâm tam giác A'B'C'.
G là trọng tâm tam giác ABC nên: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta cần chứng minh: \(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\).
Theo giả thiết:
\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AG}+\overrightarrow{GA'}+\overrightarrow{BG}+\overrightarrow{GB'}+\overrightarrow{CG}+\overrightarrow{GC'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}+\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}-\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}-\overrightarrow{0}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}=\overrightarrow{0}\)
Vậy G là trọng tâm tam giác A'B'C' hay hai tam giác ABC và A'B'C' có cùng trọng tâm.

Bình luận (0)
Nhu Nguyen
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 12 2020 lúc 15:22

Ta có:

\(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

Mà \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

\(\dfrac{1}{3}\left(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\right)=\dfrac{1}{3}\left(\overrightarrow{AG}+\overrightarrow{GG'}+\overrightarrow{G'A'}+\overrightarrow{BG}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{CG}+\overrightarrow{GG'}+\overrightarrow{G'C'}\right)\)

\(=\dfrac{1}{3}.3.\overrightarrow{GG'}=\overrightarrow{GG'}\)

Bình luận (0)