Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quynh Existn
Xem chi tiết
Nguyễn Huy Tú
21 tháng 7 2021 lúc 19:00

undefined

Nguyễn Thị Thanh Tâm
Xem chi tiết
Nguyễn Thị Thanh Tâm
23 tháng 5 2021 lúc 14:32

Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé

Khách vãng lai đã xóa
Vie-Vie
Xem chi tiết
Đỗ Thanh Hải
29 tháng 6 2021 lúc 18:25

a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x+3}}\)(\(x\ge0,x\ne9\))

b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\sqrt{x}-2\left(x\ge0,x\ne9\right)\)

 

An Thy
29 tháng 6 2021 lúc 18:29

a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x}+3}\)

b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

c) \(6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-\left|3-x\right|\)

mà \(x< 3\Rightarrow3-x>0\Rightarrow6-2x-\left|3-x\right|=6-2x-3+x=3-x\)

trương khoa
29 tháng 6 2021 lúc 18:28

a,\(\dfrac{3-\sqrt{x}}{x-9}\)

=\(-\dfrac{3-\sqrt{x}}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\)

=\(-\dfrac{1}{3+\sqrt{x}}\)

Kha Nguyễn
Xem chi tiết
Ngô Chi Lan
29 tháng 8 2020 lúc 14:40

Bài làm:

Ta có: 

\(P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)

\(P=\frac{x-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\left[\frac{\left(9-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)

\(P=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{-x+6\sqrt{x}+27+x-4\sqrt{x}+2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{3}{\sqrt{x}+3}\div\frac{x+2\sqrt{x}+20}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x+2\sqrt{x}+20}\)

\(P=\frac{3\left(\sqrt{x}-2\right)}{x+2\sqrt{x}+20}=\frac{3\sqrt{x}-6}{x+2\sqrt{x}+20}\)

Khách vãng lai đã xóa
Kang tae oh
Xem chi tiết
đỗ phương anh
Xem chi tiết
Buddy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 19:58

\(=\sqrt{x\sqrt{x^{1+\dfrac{1}{2}}}}:x^{\dfrac{5}{8}}\)

\(=\sqrt{x\cdot x^{\dfrac{1}{2}\cdot\dfrac{3}{2}}}:x^{\dfrac{5}{8}}\)

\(=\sqrt{x^{1+\dfrac{3}{4}}}:x^{\dfrac{5}{8}}\)

\(=x^{\dfrac{1}{2}\cdot\dfrac{7}{4}}:x^{\dfrac{5}{8}}=x^{\dfrac{7}{8}-\dfrac{5}{8}}=x^{\dfrac{1}{4}}=\sqrt[4]{x}\)

=>A

Thảo Phạm
Xem chi tiết
tung nguyen
Xem chi tiết
wary reus
Xem chi tiết
Hoàng Lê Bảo Ngọc
4 tháng 9 2016 lúc 10:46

Điều kiện xác định : \(x\ge0,x\ne4,x\ne9\)

\(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A< 1\) thì \(\frac{\sqrt{x}+1}{\sqrt{x}-3}< 1\Rightarrow1+\frac{4}{\sqrt{x}-3}< 1\Rightarrow\frac{4}{\sqrt{x}-3}< 0\Rightarrow\sqrt{x}-3< 0\Rightarrow x< 9\)

Kết hợp cùng với điều kiện đề bài để tìm các giá trị của x.