Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 9 2017 lúc 5:19

Đặt a = 4x + 1 và b = 4y +  điều kiện b ≥ a .  

Biểu diễn b 2   –   a 2   =   8 ( 2 y 2   +   3 y   –   2 x 2   –   x   +   1 ) .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 8 2018 lúc 9:08

Gợi ý: a = 5x – 3; b = 5y – 4.

Bùi Mai Anh
Xem chi tiết
Nguyễn Hải Văn
Xem chi tiết
nguyễn thị lan hương
11 tháng 6 2018 lúc 8:59

gọi thương của hai phép chia lần lượt là P và Q ,ta có 

a=5P+1

b=5Q+4

=> (ab)+1<=>(5P+1)(5Q+4)+1

                \(\Leftrightarrow25PQ+20P+5Q+5\)

                  \(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)

=>ab+1 chia hết cho 5

Lương Hữu Thành
12 tháng 6 2018 lúc 18:52

Ta có a chia 5 dư 1 ,

         b chia 5 dư 4,

=> ab chia 5 dư 4

=> ab+1 chia hết cho 5 

Nguyễn Lê Nguyên Vy
Xem chi tiết
Chiminh
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Nguyễn Hoàng Anh
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 21:08

Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)

\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:14

\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)

\(=25k^2+20k+5k+4+1\)

\(=25k^2+25k+5⋮5\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 7 2018 lúc 7:08

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮  5 (đpcm).

Nguyễn Hà My
Xem chi tiết
Lê Song Phương
29 tháng 10 2023 lúc 20:45

a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)

b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)

Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)

\(ab=25mn+20m+5n+4+1\)

\(ab=25mn+20m+5n+5⋮5\)

Ta có đpcm

Nguyễn Mai Anh
Xem chi tiết

a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2

\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)

b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3

\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)

 

HT.Phong (9A5)
15 tháng 10 2023 lúc 9:07

a) Số a có dạng: \(a=3k+2\) 

\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)

\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)

Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3 

\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1

b) Số a có dạng là: \(a=5k+3\) 

\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)

\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)

Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5

\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4