a/2020= b/2021= c/2022
chứng minh rằng 4(a-b)(b-c)= c-a
Cho a, b, c là các số nguyên thỏa mãn a\(^{2019}+b^{2020}+c^{2021}\) là bội của 6. Chứng minh rằng: a\(^{2021}+b^{2022}+c^{2023}\) cũng là bội của 6.
cho 3 số a,b,c thoả mãn \(\dfrac{a}{2020}=\dfrac{b}{2021}=\dfrac{c}{2022}\)
Chứng minh rằng (a-c)3+8(a-b)2.(c-b)=0
Bài này xuất hiện trong câu cuối đề GKI năm ngoái của mình :v
-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{2020}=\dfrac{c}{2022}=\dfrac{a-c}{2020-2022}=\dfrac{a-c}{-2}\\\dfrac{a}{2020}=\dfrac{b}{2021}=\dfrac{a-b}{2020-2021}=\dfrac{a-b}{-1}\\\dfrac{c}{2022}=\dfrac{b}{2021}=\dfrac{c-b}{2022-2021}=c-b\end{matrix}\right.\)
\(\Rightarrow c-b=-\left(a-b\right)=\dfrac{a-c}{-2}\)
\(\Rightarrow\left\{{}\begin{matrix}a-c=-2\left(c-b\right)\\a-b=-\left(c-b\right)\end{matrix}\right.\)
\(\left(a-c\right)^3+8\left(a-b\right)^2.\left(c-b\right)=\left[-2\left(c-b\right)\right]^3+8\left[-\left(c-b\right)\right]^2.\left(c-b\right)=-8\left(c-b\right)^3+8\left(c-b\right)^3=0\left(đpcm\right)\)
\(\frac{a}{2020}\)= \(\frac{b}{2021}\)= \(\frac{c}{2022}\)
chứng minh rằng 4(a-b)(b-c)= c-a
A=7^1+7^2+7^3+7^4+.....+7^2020
a) Thu gọn A
b) Chứng minh rằng 6a+7=7^2021
c) Chứng minh rằng Achia hết cho 8
d) Chứng minh rằng (a+7^2021) chia hết cho 8
e) so sánh 6a+7 với B=343^12345
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
a/2022=b/2021=c/2020 chứng minh (c-a)^3=8(c-b)^2.(b-a)
mình đang cần gấp
\(\dfrac{a}{2022}=\dfrac{b}{2021}=\dfrac{c}{2020}=\dfrac{c-a}{-2}=\dfrac{c-b}{-1}=\dfrac{b-a}{-1}\\ \Rightarrow c-a=2\left(c-b\right)=2\left(b-a\right)\\ \Rightarrow\left(c-a\right)^3=\left[2\left(c-b\right)\right]^3=8\left(c-b\right)^2\left(c-b\right)=8\left(c-b\right)^2\left(b-a\right)\)
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Các thần đồng đâu hết rùi
Giải hộc cái bài nào
Cho \(f\left(x\right)=x^3+ax^2+bx+c\) (a, b thuộc R). Biết f(x) chia cho x+1 dư -4, chia cho x-2 dư 5. Tính: \(A=\left(a^{2019}+b^{2019}\right).\left(b^{2020}-c^{2020}\right).\left(c^{2021}+a^{2021}\right)\)
\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)
\(\Rightarrow a-b+c=-3\)
\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)
\(\Rightarrow3a+3b=0\Rightarrow a=-b\)
\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)
\(\Rightarrow A=0\)