Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nguyệt Anh
Xem chi tiết
ngoc vui trương
3 tháng 7 2016 lúc 8:37

bạn chỉ giúp mình đáp án đi

Nguyễn Mai Anh
Xem chi tiết

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:35

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

Lê Mai Hiền Lương
Xem chi tiết
Min
2 tháng 1 2016 lúc 17:03

\(B=2x^2+10x-1\)

\(=2\left(x^2+5x+\left(\frac{5}{2}\right)^2\right)-\frac{27}{2}\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

Vì   \(\left(x+\frac{5}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)

Vậy GTNN của B là \(-\frac{27}{2}\)

Nguyễn Ngọc Nhã Uyên
Xem chi tiết
Lê Én Nhuê
Xem chi tiết
Darlingg🥝
19 tháng 12 2021 lúc 17:40

A=2x^2+10x+8

<=>A=2x^2+2.2.\(\frac{5}{2}\)+\(\frac{25}{4}\)-\(\frac{25}{4}\)+8

<=>A=(2x^2+4.\(\frac{5}{2}\)+\(\frac{25}{4}\))-\(\frac{7}{4}\)

<=>A=(2x+\(\frac{5}{2}\))2 - \(\frac{7}{4}\)

Vì (2x+\(\frac{5}{2}\))2  > 0 với mọi x

=> (2x+\(\frac{5}{2}\))2 - \(\frac{7}{4}\)>  \(-\frac{7}{4}\)với mọi x

Dấu "=" xảy ra khi và chỉ khi 2x+5/2=0=> 2x=-5/2=>x=-5/4

Vậy Amin = -7/4 khi x=-5/4

Khách vãng lai đã xóa
Nguyễn Ngọc Ánh
Xem chi tiết
HT2k02
25 tháng 7 2021 lúc 16:50

A = [y^2 +2y(x-2) + (x-2)^2] + (x^2-6x+9) + 1 

= (y+x-2)^2 + (x-3)^2 + 1 >=1 

Dấu = xảy ra khi  <=> y+x-2 = x-3=0

<=> x=3; y=-1

White Silver
Xem chi tiết
Nguyễn Hoàng Minh
4 tháng 9 2021 lúc 16:46

\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=-2\)

\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)

Dấu \("="\Leftrightarrow x=-5\)

\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 20:38

\(A=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

\(C=4x^2-4x+5\)

\(=4x^2-4x+1+4\)

\(=\left(2x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Kudora Sera
Xem chi tiết
trần đức mạnh
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Khách vãng lai đã xóa
trần đức mạnh
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Khách vãng lai đã xóa
Unirverse Sky
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Khách vãng lai đã xóa
Anh Phuong
Xem chi tiết
Minh Triều
28 tháng 5 2015 lúc 10:50

B=2x2+10x-1

=2(x2+5x-\(\frac{1}{2}\))

=2(x2+2x.\(\frac{5}{2}\)\(+\frac{25}{4}\)\(-\frac{27}{4}\))

=2[(x2+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]

=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\ge\frac{-27}{2}\)(vì (x+5/2)2\(\ge0\))

Dấu = xảy ra khi :

x+\(\frac{5}{2}\)=0

<=>x=\(\frac{-5}{2}\)

Vậy GTNN của B là \(\frac{-27}{2}\)khi x= \(\frac{-5}{2}\)

 

Nguyễn Anh Dũng
25 tháng 7 2019 lúc 8:56

Tính GTNN của Biểu thức 

2x2+40x-1