a, Gpt
x^4 -2x^3+4x^2-3x=4
b, /x+1/+/x-1/=1+/x^2-1/
Bài 1: Nhân
a) 4x(3x-1)-2(3x+1)-(x+3)
b) (-2x^2-1xy+2y^2)(-1x^2y)
c) 4x(3x^2-x) -(2x+3)^2(6x^2-3x+1)
d) (x-2)(x+2)(x+4)
Bài 2: Tìm x
a) 4x(x-1)-3(x^2-5)-x^2=(x-3)(x+4)
b) 2(3x-1)(2x+5-6)(2x-1)(x+2)=6
c) 3(2x-1)(3x-1)-(2x-3)(9x-1)-3=-3
Bài 1:
a) \(4x\left(3x-1\right)-2\left(3x+1\right)-\left(x+3\right)\)
\(=12x^2-4x-6x-2-x-3\)
\(=12x^2-11x-5\)
b) \(=\left(-2x^2-1xy+2y^2\right)\left(-1x^2y\right)\)
\(=\left[\left(-1x^2y\right)\left(-2x^2\right)\right]-\left[\left(-1x^2y\right).1xy\right]+\left[\left(-1x^2y\right).2y^2\right]\)
\(=\left(2x^4y\right)-\left(-1x^3y^2\right)+\left(-2x^2y^3\right)\)
\(=2x^4y+1x^3y^2-2x^2y^3\)
c) \(4x\left(3x^2-x\right)-\left(2x+3\right)^2\left(6x^2-3x+1\right)\)
\(=\left(4x.3x^2\right)-\left(4x.x\right)-\left[\left(2x\right)^2+2.2x.3+3^2\right]\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left(4x^2+12x+9\right)\left(6x^2-3x+1\right)\)
\(=12x^3-4x^2-\left[4x^2\left(6x^2-3x+1\right)+12x\left(6x^2-3x+1\right)+9\left(6x^2-3x+1\right)\right]\)
\(=12x^3-4x^2-\left[\left(24x^4-12x^3+4x^2\right)+\left(72x^3-36x^2+12x\right)+\left(36x^2-27x+9\right)\right]\)
\(=12x^3-4x^2-24x^4+12x^3-4x^2-72x^3+36x^2-12x-36x^2+27x-9\)
\(=-48x^3-8x^2-24x^4+15x-9\)
GPT:
(3x+4)^2-(3x-1).(3x+1)=49
(x+2).(x^2-2x+4)-x.(x+3).(x-3)
(3x+4)2-(3x-1).(3x+1)=49
<=> 9x2+24x+16-(9x2-1)=49
<=>9x2+24x+16-9x2+1=49
<=>24x+17=49
<=>24x =32
<=>x =4/3
Vậy ...
(x+2).(x^2-2x+4)-x.(x+3).(x-3)
=x3+8-x(x2-9)
=x3+8-x3+9x
=9x+8
(3x+4)2-(3x-1).(3x+1)=49
<=> 9x2+24x+16-(9x2-1)=49
<=>9x2+24x+16-9x2+1=49
<=>24x+17=49
<=>24x =32
<=>x =4/3
Vậy ...
(x+2).(x^2-2x+4)-x.(x+3).(x-3)
=x3+8-x(x2-9)
=x3+8-x3+9x
=9x+8
a, 3x(4x-3)-(2x-1)(6x+5) b, 3x(x-1)²-2x(x+3)(x-3)+4x(x-4)
c, (x-1)³-(x-2)(x²-2x+4)+3(x+4)(x-4)
a: \(=12x^2-9x-\left(12x^2+10x-6x-5\right)\)
\(=12x^2-9x-12x^2-4x+5\)
=-13x+5
b: \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x\left(x-4\right)\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+5x\)
c: \(=x^3-3x^2+3x-1-\left(x^3-8\right)+3\left(x^2-16\right)\)
\(=x^3-3x^2+3x-1-x^3+8+3x^2-48\)
\(=3x-41\)
Bài 1:
a) x (\(x^2\) + 2) + 2x\((1-\dfrac{1}{2}x^2)=4\)
b) (2x)\(^2\) (x – 1) + x(\(x^2\) + 4x) = 40
c) 3x(x – 2) – 3(\(x^2\) – 3) = 8
d) 2\(x^2\)(4\(x^3\) + 2x) + (\(x^2\) – 2)(- 2x)\(^3\) = 20
Bài 2:
P = 3x(\(\dfrac{2}{3}\)\(x^2\) − \(3x^4)\) + (3x)\(^2\) (\(x^3\) – 1) + (- 2x + 9)\(x^2\) - 12
Bài 2:
Ta có: \(P=3x\left(\dfrac{2}{3}x^2-3x^4\right)+9x^2\left(x^3-1\right)+x^2\left(-2x+9\right)-12\)
\(=2x^3-9x^5+9x^5-9x^2-2x^3+9x^2-12\)
=-12
Bài 1:
a: Ta có: \(x\left(x^2+2\right)+2x\left(1-\dfrac{1}{2}x^2\right)=4\)
\(\Leftrightarrow x^3+2x+2x-x^3=4\)
hay x=1
b: Ta có: \(4x^2\left(x-1\right)+x\left(x^2+4x\right)=40\)
\(\Leftrightarrow4x^3-4x^2+x^3+4x^2=40\)
\(\Leftrightarrow5x^3=40\)
hay x=2
c: Ta có: \(3x\left(x-2\right)-3\left(x^2-3\right)=8\)
\(\Leftrightarrow3x^2-6x-3x^2+9=8\)
\(\Leftrightarrow-6x=-1\)
hay \(x=\dfrac{1}{6}\)
tìm x biết
a) (6x-3) (2x+4) + (4x-1) (5-3x) = -21
b) 6x (3x+5) - 2x (9x-2) + (17-x) (x-1) + x (x-18) =0
c) (15-2x) (4x+1) - (13-4x) (2x-3) - (x-1) (x+2) + x2=52
d) (8x-3) (3x+2) - (4x+7) (x+4) = (2x+1) (5x-1) - 33
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) ( 6x - 3 ) ( 2x + 4 ) + ( 4x - 1 ) ( 5 - 3x ) = -21
<=> 12x2 + 24x - 6x - 12 + 20x - 12x2 - 5 + 3x = -21
<=> 41x = -21 + 12 + 5
<=> 41x = -4
<=> x = -4/41
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
b: =x-2
d: \(=-x^3+\dfrac{3}{2}-2x\)
Giai PT a, 6/x^2-1 + 5 = 8x-1/4x+4 - 12x-1/4-4x
b, 2x+1/2x-1 - 2x-1/2x+1 = 8/4x^2 -1
c, 3/2x-16 + 3x-20/x-8 + 1/8 = 13x-102/3x-24
d, x+4/x^2-3x+2 - x+1/x^2 -4x+3 = 2x+5/x^2-4x+3
B1: quy đồng mẫu số các phân thức:
a. 5/ 6x^2y ; 7/ 12xy^2 ; 11/ 18xy
b. 4x+2/ 15x^3y ; 5y - 3/ 9x^2y ; x+1/5xy^3
c. 3/2x ; 3x-3/2x-1 ; 3x-2/2x- 4x^2
d. x^3 + 2x / x^3+1 ; 2x/ x^2 - x +1 ; 1/ x+1
e. y/ 2x^2 - xy ; 4x/ y^2 - 2xy
f. 1/x+2 ; 3/ x^2 - 4 ; x-14/ ( x^2 + 4x + 4 ) (x-2)
g. 1/x+2 ; 1/ (x+2)(4x+7) ;
h. 1/x+3 ; 1/ (x+3)(x+2) ; 1/ (x+2)(4x+7)
B2: dùng quy tắc đổi dấu để tìm mẫu thức chung :
a.4/ x+2 ; 2/x-2 ; 5x-6/4-x^2
b. 1-3x/2x ; 3x-2/2x-1 ; 3x-2/2x-4x^2
c. 1/ x^2 + 6x + 9 ; 1/ 6x-x^2-9 ; x/ x^2 -9
d. x^2 + 2/ x^3 - 1 ; 2/ x^2 + x +1 ; 1/ 1-x
e. x/ - 2y ; x/ x+2y ; 4xy/ 4y^2 - x^2
Ai làm xong trước mình tick nha!