Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 15:13

\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2019}\Rightarrow\dfrac{a+b}{ab}=\dfrac{1}{2019}\Rightarrow2019=\dfrac{ab}{a+b}\)

\(\dfrac{1}{a}=\dfrac{1}{2019}-\dfrac{1}{b}=\dfrac{b-2019}{2019b}\Rightarrow b-2019=\dfrac{2019b}{a}\)

\(\dfrac{1}{b}=\dfrac{1}{2019}-\dfrac{1}{a}=\dfrac{a-2019}{2019a}\Rightarrow a-2019=\dfrac{2019a}{b}\)

\(\Rightarrow\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\dfrac{2019a}{b}}+\sqrt{\dfrac{2019b}{a}}=\dfrac{\sqrt{2019}\left(a+b\right)}{\sqrt{ab}}=\sqrt{\dfrac{ab}{a+b}}.\dfrac{a+b}{\sqrt{ab}}=\sqrt{a+b}\)

X1
Xem chi tiết
zZz Cool Kid_new zZz
2 tháng 11 2019 lúc 18:44

Đặt \(2n+2017=a^2;n+2019=b^2\)

\(\Rightarrow2n+4038=2b^2\)

\(\Rightarrow2b^2-a^2=2021\)

\(\Leftrightarrow\left(\sqrt{2b}-a\right)\left(\sqrt{2b}+a\right)=2021=1\cdot2021=47\cdot43\)

Tự xét nốt nha

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
2 tháng 11 2019 lúc 18:49

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2019}\)

\(\Leftrightarrow2019a+2019b-ab=0\)

\(\Leftrightarrow ab-2019a-2019b=0\)

\(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)

\(\Leftrightarrow a+b=a-2019+b-2019+2\sqrt{\left(a-2019\right)\left(b-2019\right)}\)

\(\Leftrightarrow2\sqrt{ab-2019a-2019b+2019^2}=2\cdot2019\)

\(\Leftrightarrow2\cdot2019=2\cdot2019\) ( LUÔN OK THEO COOL KID ĐZ )

P/S:SORRY NHA.LÚC CHIỀU BẬN VÀI VIỆC NÊN KO ONL DC:(((

Khách vãng lai đã xóa
Nguyễn Hiền Mai
Xem chi tiết
Bưu Ca
Xem chi tiết
Vũ Tiến Manh
24 tháng 10 2019 lúc 23:37

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}< =>\frac{2019}{a}+\frac{2019}{b}=1< =>\frac{2019}{b}=\frac{a-2019}{a}=>a-2019=\frac{2019a}{b}.\)

tương tự \(b-2019=\frac{2019b}{a}\)

=> \(\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\frac{2019a}{b}}+\sqrt{\frac{2019b}{a}}=\sqrt{2019}\left(\frac{a+b}{\sqrt{ab}}\right)\)(1)

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}=>ab=2019\left(a+b\right)\)thay vào (1) ta được

\(\sqrt{2019}\left(\frac{a+b}{\sqrt{2019\left(a+b\right)}}\right)=\sqrt{a+b}\)(chứng minh xong)

Khách vãng lai đã xóa
Hàn Nhật Hạ
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2021 lúc 21:30

\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)

\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)

\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)

\(\Rightarrow P\ge\sqrt{4038}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)

HT2k02
6 tháng 4 2021 lúc 21:32

Ta có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

Lại có:

\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)

\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)

Dấu = khi \(x=y=\dfrac{2019}{2}\)

:vvv
Xem chi tiết
VƯƠN CAO VIỆT NAM
Xem chi tiết
Lê Thị Thục Hiền
28 tháng 8 2019 lúc 18:29

\(y^2+2019=y^2+xy+yz+zx=y\left(x+y\right)+z\left(x+y\right)=\left(y+z\right)\left(x+y\right)\)

\(x^2+2019=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)

\(z^2+2019=z^2+xy+yz+xz=z\left(z+y\right)+x\left(y+z\right)=\left(z+x\right)\left(y+z\right)\)

\(P=x\sqrt{\frac{\left(y^2+2019\right)\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right)\left(x^2+2019\right)}{y^2+2019}}+z\sqrt{\frac{\left(x^2+2019\right)\left(y^2+2019\right)}{z^2+2019}}\)

=\(x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(z+y\right)}{\left(x+z\right)\left(y+x\right)}}+y\sqrt{\frac{\left(z+x\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)

=\(x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)

=\(x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)

=\(x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\) (vì x,y,z >0)

= xy+xz+xy+yz+xz+yz

=2(xy+xz+yz)=2.2019(vì xy+xz+yz=2019)

=4038

Vậy P=4038

Nguyễn Đức Toàn
Xem chi tiết
Yêu các anh như ARMY yêu...
Xem chi tiết