cho 2019 số \(\sqrt{1};\sqrt{2};....;\sqrt{2019}\) chọn ra 45 số trong các sô trên. cmr trong các số được chọn tồn tại 2 số có hiệu nhỏ hơn 1.
cho a,b là các số dương thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2019}\)
chứng minh: \(\sqrt{a+b}\)=\(\sqrt{a-2019}+\sqrt{b-2019}\)
\(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{2019}\Rightarrow\dfrac{a+b}{ab}=\dfrac{1}{2019}\Rightarrow2019=\dfrac{ab}{a+b}\)
\(\dfrac{1}{a}=\dfrac{1}{2019}-\dfrac{1}{b}=\dfrac{b-2019}{2019b}\Rightarrow b-2019=\dfrac{2019b}{a}\)
\(\dfrac{1}{b}=\dfrac{1}{2019}-\dfrac{1}{a}=\dfrac{a-2019}{2019a}\Rightarrow a-2019=\dfrac{2019a}{b}\)
\(\Rightarrow\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\dfrac{2019a}{b}}+\sqrt{\dfrac{2019b}{a}}=\dfrac{\sqrt{2019}\left(a+b\right)}{\sqrt{ab}}=\sqrt{\dfrac{ab}{a+b}}.\dfrac{a+b}{\sqrt{ab}}=\sqrt{a+b}\)
a, Tìm số tự nhiên n sao cho : \(2n+2017;n+2019\) đều là các số chính phương.
b, Cho a,b là các số dương thỏa mãn : \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)
Chứng minh : \(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)
Đặt \(2n+2017=a^2;n+2019=b^2\)
\(\Rightarrow2n+4038=2b^2\)
\(\Rightarrow2b^2-a^2=2021\)
\(\Leftrightarrow\left(\sqrt{2b}-a\right)\left(\sqrt{2b}+a\right)=2021=1\cdot2021=47\cdot43\)
Tự xét nốt nha
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2019}\)
\(\Leftrightarrow2019a+2019b-ab=0\)
\(\Leftrightarrow ab-2019a-2019b=0\)
\(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)
\(\Leftrightarrow a+b=a-2019+b-2019+2\sqrt{\left(a-2019\right)\left(b-2019\right)}\)
\(\Leftrightarrow2\sqrt{ab-2019a-2019b+2019^2}=2\cdot2019\)
\(\Leftrightarrow2\cdot2019=2\cdot2019\) ( LUÔN OK THEO COOL KID ĐZ )
P/S:SORRY NHA.LÚC CHIỀU BẬN VÀI VIỆC NÊN KO ONL DC:(((
Cho x,y là 2 số t/m : \(\left(x+\sqrt{x^2+\sqrt{2019}}\right)\)\(\left(y+\sqrt{y^2+\sqrt{2019}}\right)=\sqrt{2019}\)
Cho a,b>0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)
CM \(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}< =>\frac{2019}{a}+\frac{2019}{b}=1< =>\frac{2019}{b}=\frac{a-2019}{a}=>a-2019=\frac{2019a}{b}.\)
tương tự \(b-2019=\frac{2019b}{a}\)
=> \(\sqrt{a-2019}+\sqrt{b-2019}=\sqrt{\frac{2019a}{b}}+\sqrt{\frac{2019b}{a}}=\sqrt{2019}\left(\frac{a+b}{\sqrt{ab}}\right)\)(1)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}=>ab=2019\left(a+b\right)\)thay vào (1) ta được
\(\sqrt{2019}\left(\frac{a+b}{\sqrt{2019\left(a+b\right)}}\right)=\sqrt{a+b}\)(chứng minh xong)
Cho x, y là các số thực dương thỏa mãn x+y= 2019. Tìm GTNN của biểu thức P= \(\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}\)
Giúp mk vs nhé!
\(P=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\Rightarrow P^2=\dfrac{x^2}{y}+\dfrac{y^2}{x}+2\sqrt{xy}\)
\(P^2=\left(\dfrac{x^2}{y}+\sqrt{xy}+\sqrt{xy}\right)+\left(\dfrac{y^2}{x}+\sqrt{xy}+\sqrt{xy}\right)-2\sqrt{xy}\)
\(P^2\ge3x+3y-2\sqrt{xy}\ge3\left(x+y\right)-\left(x+y\right)=2\left(x+y\right)=4038\)
\(\Rightarrow P\ge\sqrt{4038}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2019}{2}\)
Ta có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{y-2019}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\ge\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
Lại có:
\(P=\dfrac{x}{\sqrt{2019-x}}+\dfrac{y}{\sqrt{2019-y}}=\dfrac{2019-y}{\sqrt{y}}+\dfrac{2019-x}{\sqrt{x}}\\ =\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)
\(\Rightarrow2P=\dfrac{2019}{\sqrt{x}}+\dfrac{2019}{\sqrt{y}}=2019\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\ge2019\cdot\dfrac{2}{\sqrt[4]{xy}}\\ \ge2019\dfrac{2}{\sqrt[2]{\dfrac{x+y}{2}}}=2019\cdot\dfrac{2}{\sqrt{\dfrac{2019}{2}}}=2\sqrt{2}\sqrt{2019}\)
\(\Rightarrow P\ge\sqrt{2}\sqrt{2019}\)
Dấu = khi \(x=y=\dfrac{2019}{2}\)
Cho x, y thoả mãn:\(\sqrt{x+2019}+\sqrt{2020-x}-\sqrt{2019-x}=\sqrt{y+2019}+\sqrt{2020-y}-\sqrt{2019-y}\)
Cm :x=y
cho x,y ,z là các số dương thỏa mãn:xy+yz+zx=2019
Tính gtrị bt\(P=x\sqrt{\frac{\left(y^2+2019\right).\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right).\left(x^2+2019\right)}{y^{2^{ }}+2019}}+z\sqrt{\frac{\left(x^2+2019\right).\left(y^2+2019\right)}{z^2+2019}}\)
Có \(y^2+2019=y^2+xy+yz+zx=y\left(x+y\right)+z\left(x+y\right)=\left(y+z\right)\left(x+y\right)\)
\(x^2+2019=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)
\(z^2+2019=z^2+xy+yz+xz=z\left(z+y\right)+x\left(y+z\right)=\left(z+x\right)\left(y+z\right)\)
Có \(P=x\sqrt{\frac{\left(y^2+2019\right)\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right)\left(x^2+2019\right)}{y^2+2019}}+z\sqrt{\frac{\left(x^2+2019\right)\left(y^2+2019\right)}{z^2+2019}}\)
=\(x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(z+y\right)}{\left(x+z\right)\left(y+x\right)}}+y\sqrt{\frac{\left(z+x\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
=\(x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
=\(x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
=\(x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\) (vì x,y,z >0)
= xy+xz+xy+yz+xz+yz
=2(xy+xz+yz)=2.2019(vì xy+xz+yz=2019)
=4038
Vậy P=4038
cho 2 số thực x,y thỏa mãn (x+\(\sqrt{x^2+2019}\))\(\left(y+\sqrt{y^2+2019}\right)\)=2019. tính giá trị biểu thức P=x4+x3y+3x2+xy-2y2+1
Rút gọn biểu thức S = \(\frac{2019}{2\sqrt{1}+1\sqrt{2}}+\frac{2019}{3\sqrt{2}+2\sqrt{3}}+\frac{2019}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2019}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Mk chỉ cần kết quả thôi , cảm ơn nhiều ạ