Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 10 2019 lúc 12:07

Giải sách bài tập Toán 10 | Giải sbt Toán 10

O Đì
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 4 2023 lúc 17:14

a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)

b: a<b

=>-2a>-2b

=>-2a-3>-2b-3

c: =x^2+2xy+y^2+y^2+6y+9

=(x+y)^2+(y+3)^2>=0 với mọi x,y

d: a+3>b+3

=>a>b

=>-5a<-5b

=>-5a+1<-5b+1

Nguyen Manh Dung
Xem chi tiết
pro
5 tháng 5 2021 lúc 10:58

Là được (x-y-5)^2 + y^2 lớn hơn hoặc bằng 0 

Dấu bằng xảy ra khi x = 5 và y=0

Do đó x^2 - 2xy + 2y^2 - 10x + 10y + 25 lớn hơn hoặc bằng 0

Chúc bạn học tốt nhớ theo dõi mk vs nhé. Mk cảm ơn

Trương Ngọc Anh Tuấn
Xem chi tiết
Hoàng văn tiến
Xem chi tiết

a: \(a^2+4b^2+9c^2=2ab+6bc+3ac\)

=>\(2a^2+8b^2+18c^2-4ab-12bc-6ac=0\)

=>\(a^2-4ab+4b^2+4b^2-12bc+9c_{}^2+a^2-6ac+9c^2=0\)

=>\(\left(a-2b\right)^2+\left(2b-3c\right)^2+\left(a-3c\right)^2=0\)

=>\(\begin{cases}a-2b=0\\ 2b-3c=0\\ 3c-a=0\end{cases}\Rightarrow a=2b=3c\)

\(A=\left(a-2b+1\right)^{2022}+\left(2b-3c-1\right)^{2023}+\left(3c-a+1\right)^{2024}\)

\(=\left(a-a+1\right)^{2022}+\left(2b-2b-1\right)^{2023}+\left(a-a+1\right)^{2024}\)

=1-1+1

=1

b: \(x^2+2xy+6x+6y+2y^2+8=0\)

=>\(x^2+2xy+y^2+6\left(x+y\right)+9+y^2-1=0\)

=>\(\left(x+y+3\right)^2-1=-y^2\)

=>\(-y^2=\left(x+y+2\right)\left(x+y+4\right)\)

=>\(-y^2=\left(x+y+2024-2022\right)\left(x+y+2024-2020\right)\)

=>\(-y^2=\left(A-2022\right)\left(A-2020\right)\)

\(-y^2\le0\forall y\)

nên (A-2022)(A-2020)<=0

=>2020<=A<=2022

\(A_{\min}=2020\) khi x+y+2=0 và y=0

=>y=0 và x=-2-y=-2-0=-2

\(A\max=2022\) khi x+y+4=0 và y=0

=>y=0 và x=-y-4=-4

Hoàng văn tiến
Xem chi tiết
Akai Haruma
13 tháng 12 2023 lúc 19:51

A.

$a^2+4b^2+9c^2=2ab+6bc+3ac$

$\Leftrightarrow a^2+4b^2+9c^2-2ab-6bc-3ac=0$

$\Leftrightarrow 2a^2+8b^2+18c^2-4ab-12bc-6ac=0$

$\Leftrightarrow (a^2+4b^2-4ab)+(a^2+9c^2-6ac)+(4b^2+9c^2-12bc)=0$

$\Leftrightarrow (a-2b)^2+(a-3c)^2+(2b-3c)^2=0$

$\Rightarrow a-2b=a-3c=2b-3c=0$

$\Rightarrow A=(0+1)^{2022}+(0-1)^{2023}+(0+1)^{2024}=1+(-1)+1=1$

 

Akai Haruma
13 tháng 12 2023 lúc 19:53

B.

$x^2+2xy+6x+6y+2y^2+8=0$

$\Leftrightarrow (x^2+2xy+y^2)+y^2+6x+6y+8=0$

$\Leftrightarrow (x+y)^2+6(x+y)+9+y^2-1=0$

$\Leftrightarrow (x+y+3)^2=1-y^2\leq 1$ (do $y^2\geq 0$ với mọi $y$)

$\Rightarrow -1\leq x+y+3\leq 1$

$\Rightarrow -4\leq x+y\leq -2$

$\Rightarrow 2020\leq x+y+2024\leq 2022$

$\Rightarrow A_{\min}=2020; A_{\max}=2022$

Vũ Anh Khôi
1 tháng 11 2024 lúc 21:57

Ko thèm tick cho người ta mà đòi hỏi câu khác ✅

Andrea
Xem chi tiết
蝴蝶石蒜
Xem chi tiết
Trần Ái Linh
30 tháng 5 2021 lúc 10:21

`A=x(x-6)+10=x^2-6x+10`

`=x^2 -2.x .3 + 3^2 + 1`

`=(x-3)^2+1 >0 forall x`

`B=x^2-2x+9y^2-6y+3`

`=(x^2-2x+1)+(9y^2-6y+1)+1`

`=(x-1)^2+(3y-1)^2+1 > 0 forall x,y`.

 

Tuyển Nguyễn Đình
Xem chi tiết
Yukru
17 tháng 8 2018 lúc 7:29

Bạn nên tách ra hỏi từng bài sẽ có nhiều người giải hơn nhé. Mà bài 2 với 3 lỗi đề rồi, đọc chẳng hiểu đề