Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Văn Hoang Tran

Cho A = x2+2y2-2xy+4x-6y+6 . Chứng minh rằng A > 0 với mọi x, y

zZz Cool Kid_new zZz
27 tháng 8 2020 lúc 20:06

\(A=x^2+2y^2-2xy+4x-6y+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)-7\)

\(=\left(x-y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2-7\)

Đề hình như có gì đó không đúng

Khách vãng lai đã xóa
Kiệt Nguyễn
27 tháng 8 2020 lúc 20:31

Ta có: \(A=x^2+2y^2-2xy+4x-6y+6=\left(x^2-2xy+y^2\right)\)          \(+4\left(x-y\right)+4+y^2-2y+1+1=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]\)\(+\left(y-1\right)^2+1=\left(x-y+2\right)^2+\left(y-1\right)^2+1\)

Ta có: \(\left(x-y+2\right)^2\ge0\forall x,y\)\(\left(y-1\right)^2\ge0\forall y\)nên \(\left(x-y+2\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

Vậy \(A=x^2+2y^2-2xy+4x-6y+6>0\forall x,y\)(đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trương Ngọc Anh Tuấn
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Hoàng văn tiến
Xem chi tiết
Andrea
Xem chi tiết
蝴蝶石蒜
Xem chi tiết
Khánh Linh
Xem chi tiết
phú quảng nguyen
Xem chi tiết
Lê Đinh Hùng
Xem chi tiết
Trần Thị Ngọc Như
Xem chi tiết