giải pt nghiệm nguyên:\(4x-5y-6xy+7=0\)
Giải phương trình nghiệm nguyên: 4x-5y-6xy-7=0
Ta có : \(4x-5y-6xy-7=0\)
\(\Leftrightarrow12x-15y-18xy-21=0\)
\(\Leftrightarrow\left(12x-18xy\right)-15y-21=0\)
\(\Leftrightarrow6x.\left(2-3y\right)+5.\left(2-3y\right)-31=0\)
\(\Leftrightarrow\left(2-3y\right)\left(6x+5\right)=31\)
Do \(x,y\inℤ\Rightarrow\hept{\begin{cases}2-3y\inℤ\\6x+5\inℤ\end{cases}}\)
Nên \(2-3y,6x+5\) là cặp ước của \(31\).
Ta có bảng sau :
\(2-3y\) | \(-1\) | \(1\) | \(-31\) | \(31\) |
\(y\) | \(1\) | \(\frac{1}{3}\) | \(11\) | \(-\frac{29}{3}\) |
\(6x+5\) | \(-31\) | \(31\) | \(-1\) | \(1\) |
\(x\) | \(-6\) | \(\frac{13}{3}\) | \(-1\) | \(-\frac{2}{3}\) |
Đánh giá | Chọn | Loại | Chọn | Loại |
Vậy \(\left(x,y\right)\in\left\{\left(-6,1\right);\left(-1,11\right)\right\}\) thỏa mãn đề.
giải pt nghiệm nguyên: xy-4x=29-5y
xy - 4x = 29 - 5y
<=> x(y - 4) - 29 + 5y = 0
<=> x(y - 4) + 5(y - 4) - 9 = 0
<=> (x + 5)(y - 4) = 9 = 1.9 = 3.3
Lập bảng:
x + 5 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 4 | 9 | -9 | 3 | -3 | 1 | -1 |
x | -4 | -6 | -2 | -8 | 4 | -14 |
y | 13 | -5 | 7 | 1 | 5 | 3 |
Tìm các cặp số nguyên (x;y) t/mãn: 4x-5y-6xy+7=0
Giải phương trình nghiệm nguyên:
10y2 + x2 - 6xy - 5y + 6 =0
Giải phương trình nghiệm nguyên:
10y2 + x2 - 6xy - 5y + 6 =0
Tìm nghiệm nguyên của pt \(x^2+5y^2-4xy+4x-8y-12=0\)
*Làm bằng cách sử dụng \(\Delta\) hoặc Δ' giúp e với ạ
PT <=> \(x^2-4x\left(y-1\right)+5y^2-8y-12=0\)
Xét \(\Delta'=\left[-2\left(y-1\right)\right]^2-1.\left(5y^2-8y-12\right)\)
= \(4\left(y^2-2y+1\right)-5y^2+8y+12\)
= \(-y^2+16\)
Để PT có nghiệm <=> \(\Delta'\ge0< =>-y^2+16\ge0\)
<=> \(y^2\le16\) <=> \(-4\le y\le4\)
Mà y nguyên
<=> \(y\in\left\{-4;-3;-2;-1;0;1;2;3;4\right\}\)
Đến đây bn thay y vào PT để tìm x nhé
tìm nghiệm nguyên của phương trình 5x^2+5y^2+6xy-20x-20y+24=0
giải PT nghiệm nguyên \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{6xy}=\dfrac{1}{6}\)
ĐKXĐ: \(xy\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{6xy}=\dfrac{1}{6}\)
\(\Rightarrow6x+6y+1=xy\)
\(\Leftrightarrow xy-6x-6y+36=37\)
\(\Leftrightarrow x\left(y-6\right)-6\left(y-6\right)=37\)
\(\Leftrightarrow\left(x-6\right)\left(y-6\right)=37\)
\(\Rightarrow\left(x-6;y-6\right)=\left(-37;-1\right);\left(-1;-37\right);\left(1;37\right);\left(37;1\right)\)
\(\Rightarrow\left(x;y\right)=\left(-31;5\right);\left(5;-31\right);\left(7;43\right);\left(43;7\right)\)
a) Tìm nghiệm nguyên của PT: xy - 4x = 35 - 5y
b) Tìm nghiệm nguyên của PT: x2 + x + 6 = y2
a,xy-4x=35-5y<=>xy-4x+5y=35<=>xy-4x+5y-20=35-20<=>x(y-4)+5(y-4)=15<=>(x+5)(y-4)=15=1.15=15.1=......
b,x2+x+6=y2<=>4(x2+x+6)=4y2<=>4x2+4x+1+5=4y2<=>(2x+1)2+5=(2y)2<=>(2y)2-(2x+1)2=5<=>(2y-2x-1)(2y+2x+1)=5=1.5=....
Lớp 8 không làm kiểu vậy
a) \(x\left(y-4\right)=35-5y\) với y= 4 không phải nghiệm
\(x=\frac{35-5y}{y-4}=\frac{15-5\left(y-4\right)}{y-4}=\frac{15}{y-4}-5\)
y-4=U(15)={-15,-5,-3,-1,1,3,5,15}
=> y={-11,-1,1,3,5,7,9,19}
=> x={-6,-8,-10,-20,10,0,-2,-4}
b)
\(\left(2x+1\right)^2=4y^2-24+1=4y^2-23\)
Hiệu 2 số chính phương =23 chỉ có thể là 11 và 12
\(\hept{\begin{cases}\left(2y\right)^2=12^2\Rightarrow y=+-6\\\left(2x+1\right)^2=11^2\Rightarrow x=5hoac-6\end{cases}}\)