cho a=b+1 cmr (a+b)(a^2+b^2)(a^4+b^4)=a^3-b^3
a)cho A=4+4^2+4^3+...+4^23+4^24.CMR A chia het cho 20 , 21 , 420
b)cho A=2+2^2+2^3+2^4+...+2^60 CMR B A chia het cho 3
c)cho B = 3+ 3^2+3^3+...+3^20.CMR B ;là bôội của 12
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
1.Cho a,b,c là độ dài ba cạnh của một tam giác:
CMR: \(a^2+b^2+c^2\leq2(ab+bc+ac)\)
2.CMR: \((x-1)(x-2)(x-3)(x-4)\geq-1\)
3.CMR:\(a^4+b^4+c^4\geq abc( a+b+c)\)
1. Không có dấu "=" em nhé.
Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác thì:
$a< b+c\Rightarrow a^2< ab+ac$
$b< a+c\Rightarrow b^2< ba+bc$
$c< a+b\Rightarrow c^2< ca+cb$
$\Rightarrow a^2+b^2+c^2< 2(ab+bc+ac)$
Ta có đpcm.
2.
$(x-1)(x-2)(x-3)(x-4)$
$=(x-1)(x-4)(x-2)(x-3)$
$=(x^2-5x+4)(x^2-5x+6)$
$=(x^2-5x+4)(x^2-5x+4+2)$
$=(x^2-5x+4)^2+2(x^2-5x+4)$
$=(x^2-5x+4)^2+2(x^2-5x+4)+1-1$
$=(x^2-5x+5)^2-1\geq 0-1=-1$ do $(x^2-5x+5)^2\geq 0$ với mọi $x\in\mathbb{R}$
Vậy ta có đpcm.
3.
Áp dụng BĐT Cô-si:
$a^4+b^4\geq 2a^2b^2$
$b^4+c^4\geq 2b^2c^2$
$c^4+a^4\geq 2c^2a^2$
Cộng theo vế và thu gọn thì:
$a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2(*)$
Tiếp tục áp dụng BĐT Cô-si:
$a^2b^2+b^2c^2\geq 2|ab^2c|\geq 2ab^2c$
$b^2c^2+c^2a^2\geq 2abc^2$
$a^2b^2+c^2a^2\geq 2a^2bc$
Cộng theo vế và thu gọn:
$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)(**)$
Từ $(*); (**)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$
Dấu "=" xảy ra khi $a=b=c$
1 cho a>0; b>0 CMR
(a+b)(a^4+b^4)>=(a^2+b^2)(a^3+b^3)
cho các số a b c thỏa mãn a+b+c=3/2 cmr a-1/a^2 + b-1/b^2+c-1/c^2 <= 3/4
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Bài 1: Cho a,b,c>0 thỏa a+b+c=1. CMR √5a+4+√5b+4+√5c+4≥75a+4+5b+4+5c+4≥7.
Bài 2: Cho a,b khác 0. CMR a2/b2 + b2/a2 +4 >= 3(a/b+b/a)
Bài 3: Tìm GTNN của Q=√2x2+2x+1+√2x2−8x+102x2+2x+1+2x2−8x+10 . ( Dùng bđt mincopxki).
Bài 4: Cho a,b>0. CMR ab2+ba2+16a+b≥5(1a+1bb)
cho a,b,c>0.CMR: 4/a+5/b+3/c>=4(3/a+b+2/b+c+1/c+a)
giup mình câu này nhé cho a+b+c=0 cmr a^5.(b^2+c^2)+b^5.(a^2+c^2)+c^5.(a^2+b^2)=1/2(a^3+b^3+c^3).(a^4+b^4+c^4)
ai nhanh 10 tick