Câu 1: Cho \(x^2-6x+1=0\).Tính giá trị biểu thức B=\(\frac{x^4+8x^2+1}{x^2}\)
Câu 2:
a/ Rút gọn biểu thức P=\(\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\). Trong đó a,b,c là các số đôi 1 phân biệt.
b/ Cho đa thức f(x) có bậc lớn hơn 1, có hệ số nguyên thỏa mãn f(5) chia hết cho 7, f(7) chia hết cho 5. CMR: f(12) chia hết cho 35
Câu 3: Cho các số x,y là các số thỏa mãn \(3x^2+x=4y^2+y\).CMR:
Cho a,b,c là các số hữu tỉ thỏa abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{b^2}{a}+\dfrac{c^2}{b}+\dfrac{a^2}{c}\)
Cmr ít nhất 1 trong 3 số a,b,x là bình phương 1 số hữu tỉ
Cho các số dương a và b thỏa mãn \(a^3+b^3=a-b\)
CMR: \(a^2+b^2+ab< 1\)
giúp với ạ
Bài 1:Rút gọn biểu thức
a)A=(x+y)2 - (x-y)2
b)B=(x+y)2 - 2(x+y)(x-y)+(x-y)2
c)(x2 + x +1)(x2 -x+1)(x2 -1)
d)(a+b-c)2 + (a-b+c)2 - 2(b-c)2
Bài 2: Cho các số thực x,y thỏa mãn điều kiện x+y=3; x2 +y2 =17. Tính giá trị biểu thức x3 +y3
Cho a,b,c thỏa mãn a+b+c = 3/2
CMR :
a^2 + b^2 + c^2 >= 3/4
cho 3 số a, b, c thỏa mãn: \(\left\{{}\begin{matrix}a+b+c=0\\-1\le a,b,c\le2\end{matrix}\right.\)
CMR. a2 + b2 + c2 \(\le6\)
Cho các số dương a, b thỏa \(a^3+b^3=a-b\) . CMR: \(a^2+b^2+ab< 1\).
@Ace Legona có lướt qua làm ơn giải hộ với =(((
Cho a, b, c là các số dương thỏa mãn \(\left(a^2+1\right)\left(b^2+4\right)\left(c^2+9\right)=48abc\)
Tính \(\dfrac{a^3+b^3+c^3}{\left(a+b+c\right)^2}\)
Cho 3 số a, b, c thỏa mãn: \(0< a\le b\le c\)
CMR: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)