Cho a,b,c là ba số khác nhau và a+b+c=0. Cmr:\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
Cho 3 số thực a, b, c đôi một khác nhau thỏa mãn: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)
CMR: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
1. Cho biểu thức:
A = \(x-2+\dfrac{6x^2-3x}{x^3+2x^2}+\left(\dfrac{x+1}{x^2-1}+\dfrac{2}{x+1}-\dfrac{3}{x}\right):\dfrac{x+2}{x^2-1}\)
a) Rút gọn A.
b) Tìm x sao cho A nhận giá trị âm.
2. Giải phương trinh: \(\dfrac{a+b-x}{c}+\dfrac{b+c-x}{a}+\dfrac{a+c-x}{b}=1-\dfrac{4x}{a+b+c}\) với \(a,b,c\ne0\); \(a+b+c\ne0\); \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ne\dfrac{4}{a+b+c}\) và x là ẩn số.
3. Giải bất phương trình: \(3x^3+4x^2+5x-6>0\).
4. Tìm x sao cho: 2 < x < 3 và \(2\left|x\right|-3\left|x-2\right|+4\left|x-3\right|=5\)
1 cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=1\)
cmr : a+b+c = abc
CMR : Nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) = 2 và a + b + c = abc thì \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Cho 3 số dương a, b, c. Chứng minh rằng:
\(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\le\dfrac{a+b+c}{2}\)
Cjo 3 số dương a,b,c . CMR
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
a0Cho (a+b+c)2=a2+b2+c2và a,b,c là 3 số khác 0
Chứng minh rằng \(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
Cho 3 số a, b, c thỏa mãn: \(0< a\le b\le c\)
CMR: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\)