Cho tam giác ABC nhọn ( AB< AC), các đường trung tuyến BD, CE cắt nhau tại G. Gọi I,K lần lượt là trung điểm của GB, GC. Chứng minh rằng:
a) IK là đường trung bình tam giác GBC
b) IK= ED, IK //ED
Cho tam giác ABC nhọn ( AB < AC), các đường trung tuyến BD,CE cắt nhau tại G. Gọi I ,K lần lượt là trung điểm của GB,GC. Chứng minh rằng :
a) IK là đường trung bình của tam giác GBC
b) IK = ED và IK // ED
Mình không biết vẽ hình trên đây nên bạn thông cảm nhé
a,Xét tam giác GBC có: GI=BI(I là trung điểm của GB)
GK=CK(K là trung điểm của GC)
=>IK là đường trung bình của tam giác GBC
b, Vì IK là đường trung bình của tam giác GBC
=> \(\hept{\begin{cases}IK=\frac{1}{2}BC\\IKsongsongBC\end{cases}}\)(1)
Vì BD là đường trung tuyến kẻ từ B của tam giác ABC =>AD=CD
Vì CE là đường trung tuyến kẻ từ C của tam giác ABC =>AE=BE
Xét tam giác ABC có: AD=CD
AE=BE
=>DE là đường trung bình của tam giác ABC
=>\(\hept{\begin{cases}DE=\frac{1}{2}BC\\DEsongsongBC\end{cases}}\)(2)
Từ (1) và (2)=>\(\hept{\begin{cases}IK=ED\\IKsongsongED\end{cases}}\)
Cho tam giác ABC , các đường trung tuyến BD, CE cắt nhau tại G. Gọi I , K lần lượt là trung điểm của GB, GC. Chứng minh rằng
a) IK là đường trung bình của tam giác GBC
b) IK=ED và IK//ED
c ) IE = KD và IE //KD
a) xét tg BGC có : BI=IG (gt) ; GK=KC (gt) => IK// BC => IK là đtb tg BGC
chỉ có thể giải v thui thông cảm nha
Tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại G. Gọi I và K lần lượt là trung điểm của GB, GC. Chứng minnh rằng IK =ED và IK //ED
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Suy ra: ED//BC và \(ED=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra IK//ED và IK=ED
cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G, gọi I,K lần lượt là trung điểm của GB,GC. Chứng minh DE//IK và DE=IK
Cho tam giác abc có hai đường trung tuyến BDvà CEcắt nhau tại G gọi I,K theo thứ tự là trung điểm của GB và GC chứng minh rằng DE song song với IK và DE bằng IK Tam giác DEK bằng tam giác IKE
Cho tam giác ABC có BC = 4cm, các đường trung tuyến BD và CE cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của GB, GC.
1/ Tính độ dài ED 2/ Chứng minh DE//IK 3/ Chứng minh tứ giác EDKI là hình bình hành.
mn giúp mình với ạ
1: Xét ΔBCA có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBCA
Suy ra: \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE= IK.
* Trong ∆ ABC, ta có:
E là trung điểm của AB (gt)
D là trung điểm của AC (gt)
Nên ED là đường trung bình của ∆ ABC
⇒ ED//BC và ED = BC/2 (tính chất đường trung bình của tam giác) (l)
* Trong ∆ GBC, ta có:
I là trung điểm của BG (gt)
K là trúng điểm của CG (gt)
Nên IK là đường trung bình của ∆ GBC
⇒ IK // BC và IK = BC/2 (tỉnh chất đường trung bình của tam giác) (2)
Từ (l) và (2) suy ra: IK // DE, IK = DE.
Cho tam giác ABC có 2 đường trung tuyến BD và CE cắt nhau tại G . Gọi I và K lần lượt là trung điểm của GB và GC cm rằng: A) DE//IK và DE=IK B) tam giác GED=tam giác GKI C) GE=1/3 CE
Tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại G. Gọi I và K lần lượt là trung điểm của GB, GC. Chứng minh rằng :
A. IK =ED và IK //ED
B. IE =KD và IE //KD
(Bạn tự vẽ hình nhé!)
a, Xét tam giác ABC, có:
E là trung điểm AB (gt)
D là trung điểm AC (gt)
=> ED là đường trung bình tam giác ABC
=> ED // BC, ED = \(\dfrac{1}{2}\) BC (t/c) (1)
Xét tam giác GBC, có:
I là trung điểm GB (gt)
K là trung điểm GC (gt)
=> IK là đường trung bình tam giác GBC
=> IK // BC, IK = \(\dfrac{1}{2}\) BC (t/c) (2)
Từ (1) và (2) => IK = ED và IK // ED
b, Vì IK // ED (cmt)
=> EDKI là hình thang
Mà IK = ED (cmt) và hai cạnh này chính là hai đáy của hình thang EDKI
=> IE = KD và IE // KD
Cho tam giác ABC, M là trung điểm của BC. Trên cạnh AB lấy D và E sao cho AD= DE= EB. Gọi I là trung điểm của AM và CD. Chứng minh I là trung điểm của AM
Aaaaaa thật sự xin lỗi! Tui viết lộn chỗ! So sorry😭😭😭
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE=IK.
Cho tam giác ABC các đường trung tuyến BD và CE cắt nhau tại G gọi I và K theo thứ tự là trung điểm của GB GC
a tứ giác BIKC lF hình gì ? Vì sao?
b tú giác EDKI là hình gì ? Vì sao?