1: Xét ΔBCA có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBCA
Suy ra: \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
1: Xét ΔBCA có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔBCA
Suy ra: \(ED=\dfrac{BC}{2}=2\left(cm\right)\)
Cho tam giác ABC có BC=4cm các đường trung tuyến BD và CE cắt nhau tại G gọi I,K là trung điểm của GB,GC a) tính độ dài DE b)chứng minh DE//IK c) chứng minh tứ giác EDKI là hình bình hành
Cho tam giác ABC có BC=4, các đường trung tuyến BD và CE cắt nhau tại G.Gọi I,K theo thứ tự là trung điểm của GB,GC
1/tính độ dài ED
2/chứng minh tứ giác EDKI là hình bình hành
Cho tam giác ABC có BC=4, các đường trung tuyến BD và CE cắt nhau tại G.Gọi I,K theo thứ tự là trung điểm của GB,GC
1/tính độ dài ED
2/chứng minh tứ giác EDKI là hình bình hành
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE= IK.
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE//IK, DE=IK.
Bài 4:
Cho tam giác ABC, các đường trung tuyến BD,CE cắt nhau ở G. Gọi I,K theo thứ tự là trung điểm GB, GC. Chứng minh:
a) Tứ giác BEDC là hình thang
b) DE // IK và DE=IK
Cho tam giác ABC nhọn ( AB < AC), các đường trung tuyến BD,CE cắt nhau tại G. Gọi I ,K lần lượt là trung điểm của GB,GC. Chứng minh rằng :
a) IK là đường trung bình của tam giác GBC
b) IK = ED và IK // ED
Cho tam giác ABC , các đường trung tuyến BD, CE cắt nhau tại G. Gọi I , K lần lượt là trung điểm của GB, GC. Chứng minh rằng
a) IK là đường trung bình của tam giác GBC
b) IK=ED và IK//ED
c ) IE = KD và IE //KD
Cho tam giác ABC nhọn ( AB< AC), các đường trung tuyến BD, CE cắt nhau tại G. Gọi I,K lần lượt là trung điểm của GB, GC. Chứng minh rằng:
a) IK là đường trung bình tam giác GBC
b) IK= ED, IK //ED