Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 11:00

a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)

\(=\left(\dfrac{BH}{CH}\right)^2\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}=\left(\dfrac{AB}{AC}\right)^3\)

b: \(BC\cdot BE\cdot CF=BC\cdot\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\)

\(=\dfrac{BC}{AB\cdot AC}\cdot AH^4=\dfrac{BC}{BC\cdot AH}\cdot AH^4=AH^3\)

Bánh Canh Chua Ngọt
Xem chi tiết
An Thy
22 tháng 6 2021 lúc 16:12

câu b bạn tham khảo ở đây

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-goi-ef-theo-thu-tu-la-hinh-chieu-cua-h-tren-ab-aca-chung-minh-bcabcdot-sincaccdot-coscb-chung-minh-afcdot-ac2efcdot-bccdot-aecchung-minh.1076798870119

An Thy
22 tháng 6 2021 lúc 16:22

a) \(HF\parallel AB\) \(\Rightarrow\dfrac{HF}{AB}=\dfrac{CF}{CA}\Rightarrow\dfrac{HF}{CF}=\dfrac{AB}{AC}\)

\(\Rightarrow\dfrac{HF}{CF}.\dfrac{AB^2}{AC^2}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF}{CF}.\dfrac{BH.BC}{CH.BC}=\dfrac{AB^3}{AC^3}\)

\(\Rightarrow\dfrac{HF.BH}{CF.CH}=\dfrac{AB^3}{AC^3}\Rightarrow\dfrac{HF.BH}{CH}.\dfrac{1}{CF}=\dfrac{AB^3}{AC^3}\left(1\right)\)

Ta có: \(HF\parallel AB\)\(\Rightarrow\angle CHF=\angle CBA\)

Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle CHF=\angle CBA\end{matrix}\right.\)

\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{BH}=\dfrac{HF}{HC}\Rightarrow BE.HC=HF.BH\)

\(\Rightarrow BE=\dfrac{HF.BH}{HC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{BE}{CF}=\dfrac{AB^3}{AC^3}\)

 

Nguyễn Tino
Xem chi tiết
NGUYỄN DOÃN ANH THÁI
Xem chi tiết
NGUYỄN DOÃN ANH THÁI
23 tháng 9 2016 lúc 10:55

dsfger

Nguyễn Phùng Quang Huy
Xem chi tiết
Giang Nhi
Xem chi tiết
Phương Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 22:20

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2019 lúc 17:28

a, Sử dụng hệ thức giữa cạnh góc vuông và hình chiếu lên cạnh huyền và cạnh huyền trong tam giác vuông HBA và HCA

b, Tương tự a) và áp dụng hệ thức giữa đường cao và hình chiếu cạnh góc vuông lên cạnh huyền trong tam giác vuông ABC

Cô nàng Thiên Yết
Xem chi tiết