tìm x biết 16x^2-(4x-5)^2=15
Tìm x biết: 16x^2- (4x-5)^2=15
\(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow\left(4x\right)^2-\left(4x-5\right)^2-15=0\)
\(\Leftrightarrow\left(4x-4x+5\right)\left(4x+4x-5\right)-15=0\)
\(\Leftrightarrow5\left(8x-5\right)-15=0\)
\(\Leftrightarrow40x-25-15=0\)
\(\Leftrightarrow40x-40=0\)
\(\Leftrightarrow x=1\)
Tìm x, biết:
\(16x^2-\left(4x-5\right)^2=15\)
\(\left(4x\right)^2-\left(4x-5\right)^2-15=0\)
\(\left(4x-4x+5\right)\left(4x+4x-5\right)-15=0\)
\(5\left(8x-5\right)-15=0\)
\(40x-25-15=0\)
\(40x-40=0\)
\(x=1\)
\(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow\left(4x+4x-5\right)\left(4x-4x+5\right)=15\)
\(\Leftrightarrow5\left(8x-5\right)=15\)
\(\Leftrightarrow8x-5=3\)
\(\Leftrightarrow8x=8\)
\(\Leftrightarrow x=1\)
tìm x biết rằng a)8x^4/2x^3+3x^3/x^2=15 b)16x^3/8x^2+4x^2/2x
tìm x : (4x+1)(16x^2-4x+1)-16x(4x^2-5)=17
64x^3 + 1 - 64x^3 + 80x =17
80x =16
x =3/10
64x^3 + 1 -64x^3 + 80x = 17
80x = 16
x = 3/10
64x^3 + 1 - 64x^3 + 80x = 17
80x = 16
x = 3/10
Tìm giá trị của đa thức sau :
1.\(A=x^{15}+3x^{14}+5\) biết x + 3 = 0
2.\(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)biết x = -3
3.\(C=21x^4+12x^3-3x^2+24x+15\)biết \(7x^3+4x^2-x+8=0\)
4.\(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)biết \(-4x^4-7x^3+4x^2-5x+8=0\)
Mn giải chi tiết hộ mik nha
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
B1: CMR:(7x + 1)2-(x+7)2=48(x2-1)
B2: Tìm x,biết:16x2-(4x-5)2=15
B3:Tìm giá trị nhỏ nhất của biểu thức:A=x2+2x=3
BÀI 1:
Ta có: \(VT=\left(7x+1\right)^2-\left(x+7\right)^2\)
\(=\left(7x+1+x+7\right)\left(7x+1-x-7\right)\)
\(=\left(8x+8\right)\left(6x-6\right)\)
\(=8\left(x+1\right).6\left(x-1\right)\)
\(=48\left(x^2-1\right)=VP\) (đpcm)
Bài 2:
\(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow\)\(16x^2-16x^2+40x-25=15\)
\(\Leftrightarrow\)\(40x=40\)
\(\Leftrightarrow\)\(x=1\)
Vậy...
Bài 3:
\(A=x^2+2x+3=\left(x+1\right)^2+2\ge2\)
Vậy MIN A = 2 khi x = -1
Tìm x: 4x+1.(16x2-4x+1)-16x.(x2-5)=17
Tìm x: 4x+1.(16x2-4x+1)-16x.(x2-5)=17
Tìm x,biết
16x^2-(4x-5)^2=15
Chứng minh
(7x+1)^2-(x+7)^2=48(x^2-1)
Bài 1:
\(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow\left(4x-4x+5\right)\left(4x+4x-5\right)=15\)
\(\Leftrightarrow5\left(8x-5\right)=15\)
\(\Leftrightarrow8x=8\Leftrightarrow x=1\)
Vậy x = 1
Bài 2:
\(VT=\left(7x+1\right)^2-\left(x+7\right)^2\)
\(=\left(7x+1-x-7\right)\left(7x+1+x+7\right)\)
\(=\left(6x-6\right)\left(8x+8\right)\)
\(=48\left(x-1\right)\left(x+1\right)\)
\(=48\left(x^2-1\right)=VP\)
\(\Rightarrowđpcm\)
Tìm x :
a) ( 2x + 3 )^2 - 4( x - 1 )( x + 1 ) = 49
b) 16x^2 - ( 4x - 5 )^2 = 15
c) ( 2x + 1 )^2 - ( x - 1)^2 = 0
a) ( 2x + 3 )^2 - 4( x - 1 )( x + 1 ) = 49
=>4x2+12x+9-4x2+4=49
=>12x+13=49
=>12x=36
=>x=3
b) 16x^2 - ( 4x - 5 )^2 = 15
=>16x2-16x2+40x-25=15
=>40x-25=15
=>40x=40
=>x=1
c) ( 2x + 1 )^2 - ( x - 1)^2 = 0
=>4x2+4x+1-x2+2x-1=0
=>3x2+6x=0
=>3x(x+2)=0
=>3x=0 hoặc x+2=0
=>x=0 hoặc x=-2
a) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\\ =>4x^2+12x+9-4x^2+4=49\\=>12x+13=49\\ =>12x=36\\ =>x=3\)
b) \(16x^2-\left(4x-5\right)^2=15\\ =>16x^2-16x^2+40x-25=15\\ =>40x-25=15\\ =>40x=40\\ =>x=1\)
c) \(\left(2x+1\right)^2-\left(x-1\right)^2=0\\ =>4x^2+4x+1-x^2+2x-1=0\\ =>3x^2+6x=0\\ =>3x\left(x+2\right)=0\\ =>\left[\frac{3x=0}{x+2=0}\right]=>\left[\frac{x=0}{x=-2}\right]\)